1,078 research outputs found

    Real-time content-aware texturing for deformable surfaces

    Get PDF
    Animation of models often introduces distortions to their parameterisation, as these are typically optimised for a single frame. The net effect is that under deformation, the mapped features, i.e. UV texture maps, bump maps or displacement maps, may appear to stretch or scale in an undesirable way. Ideally, what we would like is for the appearance of such features to remain feasible given any underlying deformation. In this paper we introduce a real-time technique that reduces such distortions based on a distortion control (rigidity) map. In two versions of our proposed technique, the parameter space is warped in either an axis or a non-axis aligned manner based on the minimisation of a non-linear distortion metric. This in turn is solved using a highly optimised hybrid CPU-GPU strategy. The result is real-time dynamic content-aware texturing that reduces distortions in a controlled way. The technique can be applied to reduce distortions in a variety of scenarios, including reusing a low geometric complexity animated sequence with a multitude of detail maps, dynamic procedurally defined features mapped on deformable geometry and animation authoring previews on texture-mapped models. © 2013 ACM

    Mesh parameterization by minimizing the synthesized distortion metric with the coefficient-optimizing algorithm

    Get PDF
    2005-2006 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    A freeform shape optimization of complex structures represented by arbitrary polygonal or polyhedral meshes

    Full text link
    In this paper we propose a new scheme for freeform shape optimization on arbitrary polygonal or polyhedral meshes. The approach consists of three main steps: (1) surface partitioning of polygonal meshes into different patches; (2) a new freeform perturbation scheme of using the Cox–de Boor basis function over arbitrary polygonal meshes, which supports multi-resolution shape optimization and does not require CAD information; (3) freeform shape optimization of arbitrary polygonal or polyhedral meshes. Numerical experiments indicate the effectiveness of the proposed approach. Copyright © 2004 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34540/1/1050_ftp.pd

    Feature-Preserving Volume Data Reduction and Focus+Context Visualization

    Full text link
    corecore