8,614 research outputs found

    Person re-identification by robust canonical correlation analysis

    Get PDF
    Person re-identification is the task to match people in surveillance cameras at different time and location. Due to significant view and pose change across non-overlapping cameras, directly matching data from different views is a challenging issue to solve. In this letter, we propose a robust canonical correlation analysis (ROCCA) to match people from different views in a coherent subspace. Given a small training set as in most re-identification problems, direct application of canonical correlation analysis (CCA) may lead to poor performance due to the inaccuracy in estimating the data covariance matrices. The proposed ROCCA with shrinkage estimation and smoothing technique is simple to implement and can robustly estimate the data covariance matrices with limited training samples. Experimental results on two publicly available datasets show that the proposed ROCCA outperforms regularized CCA (RCCA), and achieves state-of-the-art matching results for person re-identification as compared to the most recent methods

    Local-Aggregate Modeling for Big-Data via Distributed Optimization: Applications to Neuroimaging

    Full text link
    Technological advances have led to a proliferation of structured big data that have matrix-valued covariates. We are specifically motivated to build predictive models for multi-subject neuroimaging data based on each subject's brain imaging scans. This is an ultra-high-dimensional problem that consists of a matrix of covariates (brain locations by time points) for each subject; few methods currently exist to fit supervised models directly to this tensor data. We propose a novel modeling and algorithmic strategy to apply generalized linear models (GLMs) to this massive tensor data in which one set of variables is associated with locations. Our method begins by fitting GLMs to each location separately, and then builds an ensemble by blending information across locations through regularization with what we term an aggregating penalty. Our so called, Local-Aggregate Model, can be fit in a completely distributed manner over the locations using an Alternating Direction Method of Multipliers (ADMM) strategy, and thus greatly reduces the computational burden. Furthermore, we propose to select the appropriate model through a novel sequence of faster algorithmic solutions that is similar to regularization paths. We will demonstrate both the computational and predictive modeling advantages of our methods via simulations and an EEG classification problem.Comment: 41 pages, 5 figures and 3 table

    Multivariate L1 Statistical Methods: The Package MNM

    Get PDF
    In the paper we present an R package MNM dedicated to multivariate data analysis based on the L_1 norm. The analysis proceeds very much as does a traditional multivariate analysis. The regular L_2 norm is just replaced by different L_1 norms, observation vectors are replaced by their (standardized and centered) spatial signs, spatial ranks, and spatial signed-ranks, and so on. The procedures are fairly efficient and robust, and no moment assumptions are needed for asymptotic approximations. The background theory is briefly explained in the multivariate linear regression model case, and the use of the package is illustrated with several examples using the R package MNM.

    A GPU-accelerated package for simulation of flow in nanoporous source rocks with many-body dissipative particle dynamics

    Full text link
    Mesoscopic simulations of hydrocarbon flow in source shales are challenging, in part due to the heterogeneous shale pores with sizes ranging from a few nanometers to a few micrometers. Additionally, the sub-continuum fluid-fluid and fluid-solid interactions in nano- to micro-scale shale pores, which are physically and chemically sophisticated, must be captured. To address those challenges, we present a GPU-accelerated package for simulation of flow in nano- to micro-pore networks with a many-body dissipative particle dynamics (mDPD) mesoscale model. Based on a fully distributed parallel paradigm, the code offloads all intensive workloads on GPUs. Other advancements, such as smart particle packing and no-slip boundary condition in complex pore geometries, are also implemented for the construction and the simulation of the realistic shale pores from 3D nanometer-resolution stack images. Our code is validated for accuracy and compared against the CPU counterpart for speedup. In our benchmark tests, the code delivers nearly perfect strong scaling and weak scaling (with up to 512 million particles) on up to 512 K20X GPUs on Oak Ridge National Laboratory's (ORNL) Titan supercomputer. Moreover, a single-GPU benchmark on ORNL's SummitDev and IBM's AC922 suggests that the host-to-device NVLink can boost performance over PCIe by a remarkable 40\%. Lastly, we demonstrate, through a flow simulation in realistic shale pores, that the CPU counterpart requires 840 Power9 cores to rival the performance delivered by our package with four V100 GPUs on ORNL's Summit architecture. This simulation package enables quick-turnaround and high-throughput mesoscopic numerical simulations for investigating complex flow phenomena in nano- to micro-porous rocks with realistic pore geometries

    Fossil evidence for spin alignment of SDSS galaxies in filaments

    Get PDF
    We search for and find fossil evidence that the distribution of the spin axes of galaxies in cosmic web filaments relative to their host filaments are not randomly distributed. This would indicate that the action of large scale tidal torques effected the alignments of galaxies located in cosmic filaments. To this end, we constructed a catalogue of clean filaments containing edge-on galaxies. We started by applying the Multiscale Morphology Filter (MMF) technique to the galaxies in a redshift-distortion corrected version of the Sloan Digital Sky Survey DR5. From that sample we extracted those 426 filaments that contained edge-on galaxies (b/a < 0.2). These filaments were then visually classified relative to a variety of quality criteria. Statistical analysis using "feature measures" indicates that the distribution of orientations of these edge-on galaxies relative to their parent filament deviate significantly from what would be expected on the basis of a random distribution of orientations. The interpretation of this result may not be immediately apparent, but it is easy to identify a population of 14 objects whose spin axes are aligned perpendicular to the spine of the parent filament (\cos \theta < 0.2). The candidate objects are found in relatively less dense filaments. This might be expected since galaxies in such locations suffer less interaction with surrounding galaxies, and consequently better preserve their tidally induced orientations relative to the parent filament. The technique of searching for fossil evidence of alignment yields relatively few candidate objects, but it does not suffer from the dilution effects inherent in correlation analysis of large samples.Comment: 20 pages, 19 figures, slightly revised and upgraded version, accepted for publication by MNRAS. For high-res version see http://www.astro.rug.nl/~weygaert/SpinAlignJones.rev.pd

    Quantile and Probability Curves Without Crossing

    Get PDF
    This paper proposes a method to address the longstanding problem of lack of monotonicity in estimation of conditional and structural quantile functions, also known as the quantile crossing problem. The method consists in sorting or monotone rearranging the original estimated non-monotone curve into a monotone rearranged curve. We show that the rearranged curve is closer to the true quantile curve in finite samples than the original curve, establish a functional delta method for rearrangement-related operators, and derive functional limit theory for the entire rearranged curve and its functionals. We also establish validity of the bootstrap for estimating the limit law of the the entire rearranged curve and its functionals. Our limit results are generic in that they apply to every estimator of a monotone econometric function, provided that the estimator satisfies a functional central limit theorem and the function satisfies some smoothness conditions. Consequently, our results apply to estimation of other econometric functions with monotonicity restrictions, such as demand, production, distribution, and structural distribution functions. We illustrate the results with an application to estimation of structural quantile functions using data on Vietnam veteran status and earnings.Comment: 29 pages, 4 figure
    corecore