6,832 research outputs found

    State Space Modeling Using SsfPack in S+FinMetrics 3.0

    Get PDF
    This paper presents two illustrations of state space modeling in S-PLUS using the SsfPack 3.0 routines implemented in S+FinMetrics 3.0. The state space modeling functions in S+FinMetrics/SsfPack are extremely flexible and powerful and can be used for a wide variety of linear Gaussian state space models and for some non-linear and non-Gaussian state space models.

    Investigation of new radar-data-reduction techniques used to determine drag characteristics of a free-flight vehicle

    Get PDF
    An investigation was conducted of new techniques used to determine the complete transonic drag characteristics of a series of free-flight drop-test models using principally radar tracking data. The full capabilities of the radar tracking and meteorological measurement systems were utilized. In addition, preflight trajectory design, exact kinematic equations, and visual-analytical filtering procedures were employed. The results of this study were compared with the results obtained from analysis of the onboard, accelerometer and pressure sensor data of the only drop-test model that was instrumented. The accelerometer-pressure drag curve was approximated by the radar-data drag curve. However, a small amplitude oscillation on the latter curve precluded a precise definition of its drag rise

    Automated reduction of submillimetre single-dish heterodyne data from the James Clerk Maxwell Telescope using ORAC-DR

    Get PDF
    With the advent of modern multi-detector heterodyne instruments that can result in observations generating thousands of spectra per minute it is no longer feasible to reduce these data as individual spectra. We describe the automated data reduction procedure used to generate baselined data cubes from heterodyne data obtained at the James Clerk Maxwell Telescope. The system can automatically detect baseline regions in spectra and automatically determine regridding parameters, all without input from a user. Additionally it can detect and remove spectra suffering from transient interference effects or anomalous baselines. The pipeline is written as a set of recipes using the ORAC-DR pipeline environment with the algorithmic code using Starlink software packages and infrastructure. The algorithms presented here can be applied to other heterodyne array instruments and have been applied to data from historical JCMT heterodyne instrumentation.Comment: 18 pages, 13 figures, submitted to Monthly Notices of the Royal Astronomical Societ

    Reconstructing the calibrated strain signal in the Advanced LIGO detectors

    Get PDF
    Advanced LIGO's raw detector output needs to be calibrated to compute dimensionless strain h(t). Calibrated strain data is produced in the time domain using both a low-latency, online procedure and a high-latency, offline procedure. The low-latency h(t) data stream is produced in two stages, the first of which is performed on the same computers that operate the detector's feedback control system. This stage, referred to as the front-end calibration, uses infinite impulse response (IIR) filtering and performs all operations at a 16384 Hz digital sampling rate. Due to several limitations, this procedure currently introduces certain systematic errors in the calibrated strain data, motivating the second stage of the low-latency procedure, known as the low-latency gstlal calibration pipeline. The gstlal calibration pipeline uses finite impulse response (FIR) filtering to apply corrections to the output of the front-end calibration. It applies time-dependent correction factors to the sensing and actuation components of the calibrated strain to reduce systematic errors. The gstlal calibration pipeline is also used in high latency to recalibrate the data, which is necessary due mainly to online dropouts in the calibrated data and identified improvements to the calibration models or filters.Comment: 20 pages including appendices and bibliography. 11 Figures. 3 Table

    Noncommutative fields and the short-scale structure of spacetime

    Full text link
    There is a growing evidence that due to quantum gravity effects the effective spacetime dimensionality might change in the UV. In this letter we investigate this hypothesis by using quantum fields to derive the UV behaviour of the static, two point sources potential. We mimic quantum gravity effects by using non-commutative fields associated to a Lie group momentum space with a Planck mass curvature scale. We find that the static potential becomes finite in the short-distance limit. This indicates that quantum gravity effects lead to a dimensional reduction in the UV or, alternatively, that point-like sources are effectively smoothed out by the Planck scale features of the non-commutative quantum fields.Comment: 12 pages, 2 figure

    A comparison of magnetic resonance imaging and neuropsychological examination in the diagnostic distinction of Alzheimer’s disease and behavioral variant frontotemporal dementia

    Get PDF
    The clinical distinction between Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) remains challenging and largely dependent on the experience of the clinician. This study investigates whether objective machine learning algorithms using supportive neuroimaging and neuropsychological clinical features can aid the distinction between both diseases. Retrospective neuroimaging and neuropsychological data of 166 participants (54 AD; 55 bvFTD; 57 healthy controls) was analyzed via a Naïve Bayes classification model. A subgroup of patients (n = 22) had pathologically-confirmed diagnoses. Results show that a combination of gray matter atrophy and neuropsychological features allowed a correct classification of 61.47% of cases at clinical presentation. More importantly, there was a clear dissociation between imaging and neuropsychological features, with the latter having the greater diagnostic accuracy (respectively 51.38 vs. 62.39%). These findings indicate that, at presentation, machine learning classification of bvFTD and AD is mostly based on cognitive and not imaging features. This clearly highlights the urgent need to develop better biomarkers for both diseases, but also emphasizes the value of machine learning in determining the predictive diagnostic features in neurodegeneration
    corecore