60 research outputs found

    Algorithmic Monotone Multiscale Finite Volume Methods for Porous Media Flow

    Full text link
    Multiscale finite volume methods are known to produce reduced systems with multipoint stencils which, in turn, could give non-monotone and out-of-bound solutions. We propose a novel solution to the monotonicity issue of multiscale methods. The proposed algorithmic monotone (AM- MsFV/MsRSB) framework is based on an algebraic modification to the original MsFV/MsRSB coarse-scale stencil. The AM-MsFV/MsRSB guarantees monotonic and within bound solutions without compromising accuracy for various coarsening ratios; hence, it effectively addresses the challenge of multiscale methods' sensitivity to coarse grid partitioning choices. Moreover, by preserving the near null space of the original operator, the AM-MsRSB showed promising performance when integrated in iterative formulations using both the control volume and the Galerkin-type restriction operators. We also propose a new approach to enhance the performance of MsRSB for MPFA discretized systems, particularly targeting the construction of the prolongation operator. Results show the potential of our approach in terms of accuracy of the computed basis functions and the overall convergence behavior of the multiscale solver while ensuring a monotone solution at all times.Comment: 29 pages, 20 figure

    Multilevel Solvers for Unstructured Surface Meshes

    Get PDF
    Parameterization of unstructured surface meshes is of fundamental importance in many applications of digital geometry processing. Such parameterization approaches give rise to large and exceedingly ill-conditioned systems which are difficult or impossible to solve without the use of sophisticated multilevel preconditioning strategies. Since the underlying meshes are very fine to begin with, such multilevel preconditioners require mesh coarsening to build an appropriate hierarchy. In this paper we consider several strategies for the construction of hierarchies using ideas from mesh simplification algorithms used in the computer graphics literature. We introduce two novel hierarchy construction schemes and demonstrate their superior performance when used in conjunction with a multigrid preconditioner

    A Fast Geometric Multigrid Method for Curved Surfaces

    Full text link
    We introduce a geometric multigrid method for solving linear systems arising from variational problems on surfaces in geometry processing, Gravo MG. Our scheme uses point clouds as a reduced representation of the levels of the multigrid hierarchy to achieve a fast hierarchy construction and to extend the applicability of the method from triangle meshes to other surface representations like point clouds, nonmanifold meshes, and polygonal meshes. To build the prolongation operators, we associate each point of the hierarchy to a triangle constructed from points in the next coarser level. We obtain well-shaped candidate triangles by computing graph Voronoi diagrams centered around the coarse points and determining neighboring Voronoi cells. Our selection of triangles ensures that the connections of each point to points at adjacent coarser and finer levels are balanced in the tangential directions. As a result, we obtain sparse prolongation matrices with three entries per row and fast convergence of the solver.Comment: Ruben Wiersma and Ahmad Nasikun contributed equally. To be published in SIGGRAPH 2023. 16 pages total (8 main, 5 supplement), 14 figure

    DiffCloth: Differentiable Cloth Simulation with Dry Frictional Contact

    Full text link
    Cloth simulation has wide applications in computer animation, garment design, and robot-assisted dressing. This work presents a differentiable cloth simulator whose additional gradient information facilitates cloth-related applications. Our differentiable simulator extends a state-of-the-art cloth simulator based on Projective Dynamics (PD) and with dry frictional contact. We draw inspiration from previous work to propose a fast and novel method for deriving gradients in PD-based cloth simulation with dry frictional contact. Furthermore, we conduct a comprehensive analysis and evaluation of the usefulness of gradients in contact-rich cloth simulation. Finally, we demonstrate the efficacy of our simulator in a number of downstream applications, including system identification, trajectory optimization for assisted dressing, closed-loop control, inverse design, and real-to-sim transfer. We observe a substantial speedup obtained from using our gradient information in solving most of these applications

    An Efficient Geometric Multigrid Solver for Viscous Liquids

    Get PDF
    We present an efficient geometric Multigrid solver for simulating viscous liquids based on the variational approach of Batty and Bridson [2008]. Although the governing equations for viscosity are elliptic, the strong coupling between different velocity components in the discrete stencils mandates the use of more exotic smoothing techniques to achieve textbook Multigrid efficiency. Our key contribution is the design of a novel box smoother involving small and sparse systems (at most 9 x 9 in 2D and 15 x 15 in 3D), which yields excellent convergence rates and performance improvements of 3.5x - 13.8x over a naïve Multigrid approach. We employ a hybrid approach by using a direct solver only inside the box smoother and keeping the remaining pipeline assembly-free, allowing our solver to efficiently accommodate more than 194 million degrees of freedom, while occupying a memory footprint of less than 16 GB. To reduce the computational overhead of using the box smoother, we precompute the Cholesky factorization of the subdomain system matrix for all interior degrees of freedom. We describe how the variational formulation, which requires volume weights computed at the centers of cells, edges, and faces, can be naturally accommodated in the Multigrid hierarchy to properly enforce boundary conditions. Our proposed Multigrid solver serves as an excellent preconditioner for Conjugate Gradients, outperforming existing state-of-the-art alternatives. We demonstrate the efficacy of our method on several high resolution examples of viscous liquid motion including two-way coupled interactions with rigid bodies.This work was supported in part by the Rutgers University start-up grant, the Ralph E. Powe Junior Faculty Enhancement Award, and the Natural Sciences and Engineering Research Council of Canada (RGPIN-04360-2014, CRDPJ-499952-2016)

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Multilevel Solvers for Unstructured Surface Meshes

    Full text link

    Doctor of Philosophy

    Get PDF
    dissertationPartial differential equations (PDEs) are widely used in science and engineering to model phenomena such as sound, heat, and electrostatics. In many practical science and engineering applications, the solutions of PDEs require the tessellation of computational domains into unstructured meshes and entail computationally expensive and time-consuming processes. Therefore, efficient and fast PDE solving techniques on unstructured meshes are important in these applications. Relative to CPUs, the faster growth curves in the speed and greater power efficiency of the SIMD streaming processors, such as GPUs, have gained them an increasingly important role in the high-performance computing area. Combining suitable parallel algorithms and these streaming processors, we can develop very efficient numerical solvers of PDEs. The contributions of this dissertation are twofold: proposal of two general strategies to design efficient PDE solvers on GPUs and the specific applications of these strategies to solve different types of PDEs. Specifically, this dissertation consists of four parts. First, we describe the general strategies, the domain decomposition strategy and the hybrid gathering strategy. Next, we introduce a parallel algorithm for solving the eikonal equation on fully unstructured meshes efficiently. Third, we present the algorithms and data structures necessary to move the entire FEM pipeline to the GPU. Fourth, we propose a parallel algorithm for solving the levelset equation on fully unstructured 2D or 3D meshes or manifolds. This algorithm combines a narrowband scheme with domain decomposition for efficient levelset equation solving
    • …
    corecore