48 research outputs found

    Mini-Workshop: Numerical Upscaling for Flow Problems: Theory and Applications

    Get PDF
    The objective of this workshop was to bring together researchers working in multiscale simulations with emphasis on multigrid methods and multiscale finite element methods, aiming at chieving of better understanding and synergy between these methods. The goal of multiscale finite element methods, as upscaling methods, is to compute coarse scale solutions of the underlying equations as accurately as possible. On the other hand, multigrid methods attempt to solve fine-scale equations rapidly using a hierarchy of coarse spaces. Multigrid methods need “good” coarse scale spaces for their efficiency. The discussions of this workshop partly focused on approximation properties of coarse scale spaces and multigrid convergence. Some other presentations were on upscaling, domain decomposition methods and nonlinear multiscale methods. Some researchers discussed applications of these methods to reservoir simulations, as well as to simulations of filtration, insulating materials, and turbulence

    Truncation preconditioners for stochastic Galerkin finite element discretizations

    Get PDF
    Stochastic Galerkin finite element method (SGFEM) provides an efficient alternative to traditional sampling methods for the numerical solution of linear elliptic partial differential equations with parametric or random inputs. However, computing stochastic Galerkin approximations for a given problem requires the solution of large coupled systems of linear equations. Therefore, an effective and bespoke iterative solver is a key ingredient of any SGFEM implementation. In this paper, we analyze a class of truncation preconditioners for SGFEM. Extending the idea of the mean-based preconditioner, these preconditioners capture additional significant components of the stochastic Galerkin matrix. Focusing on the parametric diffusion equation as a model problem and assuming affine-parametric representation of the diffusion coefficient, we perform spectral analysis of the preconditioned matrices and establish optimality of truncation preconditioners with respect to SGFEM discretization parameters. Furthermore, we report the results of numerical experiments for model diffusion problems with affine and non-affine parametric representations of the coefficient. In particular, we look at the efficiency of the solver (in terms of iteration counts for solving the underlying linear systems) and compare truncation preconditioners with other existing preconditioners for stochastic Galerkin matrices, such as the mean-based and the Kronecker product ones.Comment: 27 pages, 6 table

    Institute for Scientific Computing Research Annual Report: Fiscal Year 2004

    Full text link

    ISCR Annual Report: Fical Year 2004

    Full text link

    SOLID-SHELL FINITE ELEMENT MODELS FOR EXPLICIT SIMULATIONS OF CRACK PROPAGATION IN THIN STRUCTURES

    Get PDF
    Crack propagation in thin shell structures due to cutting is conveniently simulated using explicit finite element approaches, in view of the high nonlinearity of the problem. Solidshell elements are usually preferred for the discretization in the presence of complex material behavior and degradation phenomena such as delamination, since they allow for a correct representation of the thickness geometry. However, in solid-shell elements the small thickness leads to a very high maximum eigenfrequency, which imply very small stable time-steps. A new selective mass scaling technique is proposed to increase the time-step size without affecting accuracy. New ”directional” cohesive interface elements are used in conjunction with selective mass scaling to account for the interaction with a sharp blade in cutting processes of thin ductile shells

    Multiphysics simulations: challenges and opportunities.

    Full text link
    corecore