10,493 research outputs found

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Involuntary saccades and binocular coordination during visual pursuit in Parkinson's disease

    Get PDF
    Prior studies of oculomotor function in Parkinson's disease (PD) have either focused on saccades while smooth pursuit eye movements were not involved, or tested smooth pursuit without considering the effect of any involuntary saccades. The present study investigated whether these involuntary saccades could serve as a useful biomarker for PD. Ten observers with PD participated in the study along with 10 age-matched normal control (NC) and 10 young control participants (YC). Observers fixated on a central cross while a disk (target) moved toward it from either side of the screen. Once the target reached the fixation cross, observers began to pursue the moving target until the target reached to the other side. To vary the difficulty of fixation and pursuit, the moving target was presented on a blank or a moving background. The moving background consisted of uniformly distributed dots moved in either the same or the opposite direction of the target once the target reached the central fixation cross. To investigate binocular coordination, each background condition was presented under a binocular condition, in which both eyes saw the same stimulus, and under a dichoptic condition, in which one eye saw only the target and the other eye only saw the background. The results showed that in both background conditions, observers with PD made more involuntary saccades than NC and YC during both fixation and pursuit periods while YC and NC showed no difference. Moreover, the difference between left and right eye positions increased over time during the pursuit period for PD group but not for the other two groups. This suggests that individuals with PD may be impaired not only in saccade inhibition, but also in binocular coordination during pursuit. [Meeting abstract presented at VSS 2016.]Accepted manuscrip

    Eye movement control during visual pursuit in Parkinson's disease

    Get PDF
    BACKGROUND: Prior studies of oculomotor function in Parkinson’s disease (PD) have either focused on saccades without considering smooth pursuit, or tested smooth pursuit while excluding saccades. The present study investigated the control of saccadic eye movements during pursuit tasksand assessed the quality of binocular coordinationas potential sensitive markers of PD. METHODS: Observers fixated on a central cross while a target moved toward it. Once the target reached the fixation cross, observers began to pursue the moving target. To further investigate binocular coordination, the moving target was presented on both eyes (binocular condition), or on one eye only (dichoptic condition). RESULTS: The PD group made more saccades than age-matched normal control adults (NC) both during fixation and pursuit. The difference between left and right gaze positions increased over time during the pursuit period for PD but not for NC. The findings were not related to age, as NC and young-adult control group (YC) performed similarly on most of the eye movement measures, and were not correlated with classical measures of PD severity (e.g., Unified Parkinson’s Disease Rating Scale (UPDRS) score). DISCUSSION: Our results suggest that PD may be associated with impairment not only in saccade inhibition, but also in binocular coordination during pursuit, and these aspects of dysfunction may be useful in PD diagnosis or tracking of disease course.This work was supported in part by grants from the National Science Foundation (NSF SBE-0354378 to Arash Yazdanbakhsh and Bo Cao) and Office of Naval Research (ONR N00014-11-1-0535 to Bo Cao, Chia-Chien Wu, and Arash Yazdanbakhsh). There was no additional external funding received for this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. (SBE-0354378 - National Science Foundation (NSF); ONR N00014-11-1-0535 - Office of Naval Research)Published versio

    Visual motion processing and human tracking behavior

    Full text link
    The accurate visual tracking of a moving object is a human fundamental skill that allows to reduce the relative slip and instability of the object's image on the retina, thus granting a stable, high-quality vision. In order to optimize tracking performance across time, a quick estimate of the object's global motion properties needs to be fed to the oculomotor system and dynamically updated. Concurrently, performance can be greatly improved in terms of latency and accuracy by taking into account predictive cues, especially under variable conditions of visibility and in presence of ambiguous retinal information. Here, we review several recent studies focusing on the integration of retinal and extra-retinal information for the control of human smooth pursuit.By dynamically probing the tracking performance with well established paradigms in the visual perception and oculomotor literature we provide the basis to test theoretical hypotheses within the framework of dynamic probabilistic inference. We will in particular present the applications of these results in light of state-of-the-art computer vision algorithms

    Optimizations and applications in head-mounted video-based eye tracking

    Get PDF
    Video-based eye tracking techniques have become increasingly attractive in many research fields, such as visual perception and human-computer interface design. The technique primarily relies on the positional difference between the center of the eye\u27s pupil and the first-surface reflection at the cornea, the corneal reflection (CR). This difference vector is mapped to determine an observer\u27s point of regard (POR). In current head-mounted video-based eye trackers, the systems are limited in several aspects, such as inadequate measurement range and misdetection of eye features (pupil and CR). This research first proposes a new `structured illumination\u27 configuration, using multiple IREDs to illuminate the eye, to ensure that eye positions can still be tracked even during extreme eye movements (up to ±45° horizontally and ±25° vertically). Then eye features are detected by a two-stage processing approach. First, potential CRs and the pupil are isolated based on statistical information in an eye image. Second, genuine CRs are distinguished by a novel CR location prediction technique based on the well-correlated relationship between the offset of the pupil and that of the CR. The optical relationship of the pupil and CR offsets derived in this thesis can be applied to two typical illumination configurations - collimated and near-source ones- in the video-based eye tracking system. The relationships from the optical derivation and that from an experimental measurement match well. Two application studies, smooth pursuit dynamics in controlled static (laboratory) and unconstrained vibrating (car) environments were conducted. In the first study, the extended stimuli (color photographs subtending 2° and 17°, respectively) were found to enhance smooth pursuit movements induced by realistic images, and the eye velocity for tracking a small dot (subtending \u3c0.1°) was saturated at about 64 deg/sec while the saturation velocity occurred at higher velocities for the extended images. The difference in gain due to target size was significant between dot and the two extended stimuli, while no statistical difference existed between the two extended stimuli. In the second study, twovisual stimuli same as in the first study were used. The visual performance was impaired dramatically due to the whole body motion in the car, even in the tracking of a slowly moving target (2 deg/sec); the eye was found not able to perform a pursuit task as smooth as in the static environment though the unconstrained head motion in the unstable condition was supposed to enhance the visual performance

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    Effects of Motion Pattern Characteristics on the Perception of Visual Acceleration

    Get PDF
    The ability to perceive visual motion is one that we use every day to perform goal-directed activities, such as intercepting or avoiding objects. As objects and observers rarely move at constant velocities, it is important to be able to detect changes in velocity. However, little attention has been paid to how we perceive visual acceleration in the literature. This thesis explored the influence of real world-relevant motion pattern characteristics on visual acceleration perception. Observers rarely see object motion with an unlimited field of view, and therefore we first examined how physically constraining the horizontal distance over which a stimulus can move affects the ability to detect and pursue horizontal acceleration and deceleration at different average velocities. Results indicated that detection improves and smooth pursuit worsens as average velocity increases. Moreover, both improve as the horizontal aperture size increases. Given our asymmetrical experience with the frequency and relevance of upward compared to downward events due to gravity, we then investigated whether acceleration and deceleration detection vary as a function of vertical direction. We also tested whether the effects of aperture size on detection and pursuit persist on the vertical axis. Our data suggested that detection is better for downward than upward motion, and both detection and smooth pursuit improve as the vertical aperture size increases. Considering that we tend to see translation as well as more complex motion patterns outside the laboratory, we subsequently explored whether acceleration and deceleration detection vary between horizontal translation and radial optic flow, which is similar to the motion we see when moving forward or backward while looking straight ahead. We found that detection is better for radial than horizontal motion, although direction within each pattern type has no effect. Finally, we verified that sensitivity to the presence of acceleration is uniform across the optic flow field, regardless of radial direction. In summary, although we detect acceleration and deceleration similarly across a wide range of conditions, overall perception appears to be affected by the unique characteristics of the motion pattern

    Human middle temporal cortex, perceptual bias, and perceptual memory for ambiguous three-dimensional motion

    Get PDF
    When faced with inconclusive or conflicting visual input human observers experience one of multiple possible perceptions. One factor that determines perception of such an ambiguous stimulus is how the same stimulus was perceived on previous occasions, a phenomenon called perceptual memory. We examined perceptual memory of an ambiguous motion stimulus while applying transcranial magnetic stimulation (TMS) to the motion-sensitive areas of the middle temporal cortex (hMT+). TMS increased the predominance of whichever perceptual interpretation was most commonly reported by a given observer at baseline, with reduced perception of the less favored interpretation. This increased incidence of the preferred percept indicates impaired long-term buildup of perceptual memory traces that normally act against individual percept biases. We observed no effect on short-term memory traces acting from one presentation to the next. Our results indicate that hMT+ is important for the long-term buildup of perceptual memory for ambiguous motion stimuli
    corecore