97 research outputs found

    One-round strong oblivious signature-based envelope

    Get PDF
    Oblivious Signature-Based Envelope (OSBE) has been widely employed for anonymity-orient and privacy-preserving applications. The conventional OSBE execution relies on a secure communication channel to protect against eavesdroppers. In TCC 2012, Blazy, Pointcheval and Vergnaud proposed a framework of OSBE (BPV-OSBE) without requiring any secure channel by clarifying and enhancing the OSBE security notions. They showed how to generically build an OSBE scheme satisfying the new strong security in the standard model with a common-reference string. Their framework requires 2-round interactions and relies on the smooth projective hash function (SPHF) over special languages, i.e., languages from encryption of signatures. In this work, we investigate the study on the strong OSBE and make the following contributions. First, we propose a generic construction of one-round yet strong OSBE system. Compared to the 2-round BPV-OSBE, our one-round construction is more appealing, as its noninteractive setting accommodates more application scenarios in the real word. Moreover, our framework relies on the regular (identity-based) SPHF, which can be instantiated from extensive languages and hence is more general. Second, we also present an efficient instantiation, which is secure under the standard model from classical assumptions, DDH and DBDH, to illustrate the feasibility of our one-round framework. We remark that our construction is the first one-round OSBE with strong securit

    A Framework for Fully-Simulatable tt-out-of-nn Oblivious Transfer

    Get PDF
    Oblivious transfer is a fundamental building block for multiparty computation protocols. In this paper, we present a generally realizable framework for fully-simulatable tt-out-of-nn oblivious transfer (\mbox{OT}^{n}_{t}) with security against non-adaptive malicious adversaries in the plain mode. Our construction relies on a single cryptographic primitive which is a variant of smooth projective hashing (SPH). A direct consequence of our work is that the existence of protocols for \mbox{OT}^{n}_{t} is reduced to the existence of this SPH variant. Before this paper, the only known reductions provided half-simulatable security and every known efficient protocol involved at least two distinct cryptographic primitives. We show how to instantiate this new SPH variant under not only the decisional Diffie-Hellman assumption, the decisional NN-th residuosity assumption and the decisional quadratic residuosity assumption as currently existing SPH constructions, but also the learning with errors problem. Our framework only needs 44 communication rounds, which implies that it is more round-efficient than known protocols holding identical features

    Statistical Witness Indistinguishability (and more) in Two Messages

    Get PDF
    Two-message witness indistinguishable protocols were first constructed by Dwork and Naor (FOCS 00). They have since proven extremely useful in the design of several cryptographic primitives. However, so far no two-message arguments for NP provided statistical privacy against malicious verifiers. In this paper, we construct the first: - Two-message statistical witness indistinguishable (SWI) arguments for NP. - Two-message statistical zero-knowledge arguments for NP with super-polynomial simulation (Statistical SPS-ZK). These were previously believed to be impossible to construct via black-box reductions (Chung et al., ePrint 2012). - Two-message statistical distributional weak zero-knowledge (SwZK) arguments for NP with polynomial simulation, where the instance is sampled by the prover in the second round. These protocols are based on quasi-polynomial hardness of two-message oblivious transfer (OT) with game-based security, which can in turn be based on quasi-polynomial DDH or QR or N\u27th residuosity. We also demonstrate simple applications of these arguments to constructing more secure forms of oblivious transfer. Along the way, we show that the Kalai and Raz (Crypto 09) transform compressing interactive proofs to two-message arguments can be generalized to compress certain types of interactive arguments. We introduce and construct a new technical tool, which is a variant of extractable two-message statistically hiding commitments, by extending the work of Khurana and Sahai (FOCS 17). These techniques may be of independent interest
    • …
    corecore