149 research outputs found

    Smooth Multirate Multicast Congestion Control

    Full text link
    A significant impediment to deployment of multicast services is the daunting technical complexity of developing, testing and validating congestion control protocols fit for wide-area deployment. Protocols such as pgmcc and TFMCC have recently made considerable progress on the single rate case, i.e. where one dynamic reception rate is maintained for all receivers in the session. However, these protocols have limited applicability, since scaling to session sizes beyond tens of participants necessitates the use of multiple rate protocols. Unfortunately, while existing multiple rate protocols exhibit better scalability, they are both less mature than single rate protocols and suffer from high complexity. We propose a new approach to multiple rate congestion control that leverages proven single rate congestion control methods by orchestrating an ensemble of independently controlled single rate sessions. We describe SMCC, a new multiple rate equation-based congestion control algorithm for layered multicast sessions that employs TFMCC as the primary underlying control mechanism for each layer. SMCC combines the benefits of TFMCC (smooth rate control, equation-based TCP friendliness) with the scalability and flexibility of multiple rates to provide a sound multiple rate multicast congestion control policy.National Science Foundation (ANI-9986397, ANI-0092196

    STAIR: Practical AIMD Multirate Congestion Control

    Full text link
    Existing approaches for multirate multicast congestion control are either friendly to TCP only over large time scales or introduce unfortunate side effects, such as significant control traffic, wasted bandwidth, or the need for modifications to existing routers. We advocate a layered multicast approach in which steady-state receiver reception rates emulate the classical TCP sawtooth derived from additive-increase, multiplicative decrease (AIMD) principles. Our approach introduces the concept of dynamic stair layers to simulate various rates of additive increase for receivers with heterogeneous round-trip times (RTTs), facilitated by a minimal amount of IGMP control traffic. We employ a mix of cumulative and non-cumulative layering to minimize the amount of excess bandwidth consumed by receivers operating asynchronously behind a shared bottleneck. We integrate these techniques together into a congestion control scheme called STAIR which is amenable to those multicast applications which can make effective use of arbitrary and time-varying subscription levels.National Science Foundation (CAREER ANI-0093296, ANI-9986397

    Necessary and sufficient conditions for optimal flow control in multirate multicast networks

    Get PDF
    The authors consider the optimal flow control problem in multirate multicast networks where all receivers of the same multicast group can receive service at different rates with different QoS. The objective is to achieve the fairness transmission rates that maximise the total receiver utility under the capacity constraint of links. They first propose necessary and sufficient conditions for the optimal solution to the problem, and then derive a new optimal flow control strategy using the Lagrangian multiplier method. Like the unicast case, the basic algorithm consists of a link algorithm to update the link price, and a receiver algorithm to adapt the transmission rate according to the link prices along its path. In particular if some groups contain only one receiver and become unicast, the algorithm will degrade to their previously proposed unicast algorithm

    Leveraging Single Rate Schemes in Multiple Rate Multicast Congestion Control Design

    Full text link

    Application-Oriented Flow Control: Fundamentals, Algorithms and Fairness

    Get PDF
    This paper is concerned with flow control and resource allocation problems in computer networks in which real-time applications may have hard quality of service (QoS) requirements. Recent optimal flow control approaches are unable to deal with these problems since QoS utility functions generally do not satisfy the strict concavity condition in real-time applications. For elastic traffic, we show that bandwidth allocations using the existing optimal flow control strategy can be quite unfair. If we consider different QoS requirements among network users, it may be undesirable to allocate bandwidth simply according to the traditional max-min fairness or proportional fairness. Instead, a network should have the ability to allocate bandwidth resources to various users, addressing their real utility requirements. For these reasons, this paper proposes a new distributed flow control algorithm for multiservice networks, where the application's utility is only assumed to be continuously increasing over the available bandwidth. In this, we show that the algorithm converges, and that at convergence, the utility achieved by each application is well balanced in a proportionally (or max-min) fair manner

    Optimization Based Rate Control for Multicast with Network Coding

    Get PDF
    Recent advances in network coding have shown great potential for efficient information multicasting in communication networks, in terms of both network throughput and network management. In this paper, we address the problem of rate control at end-systems for network coding based multicast flows. We develop two adaptive rate control algorithms for the networks with given coding subgraphs and without given coding subgraphs, respectively. With random network coding, both algorithms can be implemented in a distributed manner, and work at transport layer to adjust source rates and at network layer to carry out network coding. We prove that the proposed algorithms converge to the globally optimal solutions for intrasession network coding. Some related issues are discussed, and numerical examples are provided to complement our theoretical analysis

    Scalable reliable on-demand media streaming protocols

    Get PDF
    This thesis considers the problem of delivering streaming media, on-demand, to potentially large numbers of concurrent clients. The problem has motivated the development in prior work of scalable protocols based on multicast or broadcast. However, previous protocols do not allow clients to efficiently: 1) recover from packet loss; 2) share bandwidth fairly with competing flows; or 3) maximize the playback quality at the client for any given client reception rate characteristics. In this work, new protocols, namely Reliable Periodic Broadcast (RPB) and Reliable Bandwidth Skimming (RBS), are developed that efficiently recover from packet loss and achieve close to the best possible server bandwidth scalability for a given set of client characteristics. To share bandwidth fairly with competing traffic such as TCP, these protocols can employ the Vegas Multicast Rate Control (VMRC) protocol proposed in this work. The VMRC protocol exhibits TCP Vegas-like behavior. In comparison to prior rate control protocols, VMRC provides less oscillatory reception rates to clients, and operates without inducing packet loss when the bottleneck link is lightly loaded. The VMRC protocol incorporates a new technique for dynamically adjusting the TCP Vegas threshold parameters based on measured characteristics of the network. This technique implements fair sharing of network resources with other types of competing flows, including widely deployed versions of TCP such as TCP Reno. This fair sharing is not possible with the previously defined static Vegas threshold parameters. The RPB protocol is extended to efficiently support quality adaptation. The Optimized Heterogeneous Periodic Broadcast (HPB) is designed to support a range of client reception rates and efficiently support static quality adaptation by allowing clients to work-ahead before beginning playback to receive a media file of the desired quality. A dynamic quality adaptation technique is developed and evaluated which allows clients to achieve more uniform playback quality given time-varying client reception rates

    Optimization based rate control for multicast with network coding: A multipath formulation

    Get PDF
    Network coding offers new capabilities for efficient information multicasting in communication networks. In this paper, we study rate control for multicast with network coding. We propose a path-based multicasting scheme, where each source has multiple paths to each receiver in the multicast group. One advantage of this approach over a tree-based approach is that it is easier to find a minimum cost set of paths as compared to trees. We present three end-to-end rate control algorithms which operate over the set of paths supplied by the network layer. With random network coding, all algorithms can be implemented in a distributed manner. Our algorithms can also be generalized to solve other optimization problems with non-strictly concave objection function

    Scaleable Round Trip Time Estimation for Layered Multicast Protocol

    Get PDF
    Abstract-Layered multicast protocol (LMP) is designed for simultaneous and real-time content distribution to a large number of disparate receivers across a heterogeneous internet. Most LMPs use TCP-equation model to control their rate, which is usually performed at the receivers. The equation models steady-state TCP behaviour with a function of loss rate, round trip time (RTT), timeout, and packet size. Loss rate can be easily estimated at the receivers, however RTT estimation pose implosion problem at the sender in particular when the number of receivers is very large. In this paper, we proposed a new technique for scalable RTT estimation for layered multicast protocol. The technique enables layered multicast receivers to estimate RTT without causing implosion problem to the sender

    Equation-Based Layered Multicast Congestion Control

    Get PDF
    corecore