3,531 research outputs found

    Continuation method for nonlinear complementarity problems via normal maps

    Get PDF
    Cataloged from PDF version of article.In a recent paper by Chen and Mangasarian (C. Chen, O.L. Mangasarian, A class of smoothing functions for nonlinear and mixed complementarity problems, Computational Optimization and Applications 2 (1996), 97±138) a class of parametric smoothing functions has been proposed to approximate the plus function present in many optimization and complementarity related problems. This paper uses these smoothing functions to approximate the normal map formulation of nonlinear complementarity problems (NCP). Properties of the smoothing function are investigated based on the density functions that de®nes the smooth approximations. A continuation method is then proposed to solve the NCPs arising from the approximations. Su cient conditions are provided to guarantee the boundedness of the solution trajectory. Furthermore, the structure of the subproblems arising in the proposed continuation method is analyzed for di erent choices of smoothing functions. Computational results of the continuation method are reported. Ó 1999 Elsevier Science B.V. All rights reserved

    Hybrid Newton-type method for a class of semismooth equations

    Get PDF
    In this paper, we present a hybrid method for the solution of a class of composite semismooth equations encountered frequently in applications. The method is obtained by combining a generalized finite-difference Newton method to an inexpensive direct search method. We prove that, under standard assumptions, the method is globally convergent with a local rate of convergence which is superlinear or quadratic. We report also several numerical results obtained applying the method to suitable reformulations of well-known nonlinear complementarity problem

    Recursive Approximation of the High Dimensional max Function

    Get PDF
    An alternative smoothing method for the high dimensional max functionhas been studied. The proposed method is a recursive extension of thetwo dimensional smoothing functions. In order to analyze the proposedmethod, a theoretical framework related to smoothing methods has beendiscussed. Moreover, we support our discussion by considering someapplication areas. This is followed by a comparison with analternative well-known smoothing method.n dimensional max function;recursive approximation;smoothing methods;vertical linear complementarity (VLCP)

    Differential-Algebraic Equations and Beyond: From Smooth to Nonsmooth Constrained Dynamical Systems

    Get PDF
    The present article presents a summarizing view at differential-algebraic equations (DAEs) and analyzes how new application fields and corresponding mathematical models lead to innovations both in theory and in numerical analysis for this problem class. Recent numerical methods for nonsmooth dynamical systems subject to unilateral contact and friction illustrate the topicality of this development.Comment: Preprint of Book Chapte

    Contact-Implicit Trajectory Optimization Based on a Variable Smooth Contact Model and Successive Convexification

    Full text link
    In this paper, we propose a contact-implicit trajectory optimization (CITO) method based on a variable smooth contact model (VSCM) and successive convexification (SCvx). The VSCM facilitates the convergence of gradient-based optimization without compromising physical fidelity. On the other hand, the proposed SCvx-based approach combines the advantages of direct and shooting methods for CITO. For evaluations, we consider non-prehensile manipulation tasks. The proposed method is compared to a version based on iterative linear quadratic regulator (iLQR) on a planar example. The results demonstrate that both methods can find physically-consistent motions that complete the tasks without a meaningful initial guess owing to the VSCM. The proposed SCvx-based method outperforms the iLQR-based method in terms of convergence, computation time, and the quality of motions found. Finally, the proposed SCvx-based method is tested on a standard robot platform and shown to perform efficiently for a real-world application.Comment: Accepted for publication in ICRA 201
    corecore