516 research outputs found

    Every Smile is Unique: Landmark-Guided Diverse Smile Generation

    Full text link
    Each smile is unique: one person surely smiles in different ways (e.g., closing/opening the eyes or mouth). Given one input image of a neutral face, can we generate multiple smile videos with distinctive characteristics? To tackle this one-to-many video generation problem, we propose a novel deep learning architecture named Conditional Multi-Mode Network (CMM-Net). To better encode the dynamics of facial expressions, CMM-Net explicitly exploits facial landmarks for generating smile sequences. Specifically, a variational auto-encoder is used to learn a facial landmark embedding. This single embedding is then exploited by a conditional recurrent network which generates a landmark embedding sequence conditioned on a specific expression (e.g., spontaneous smile). Next, the generated landmark embeddings are fed into a multi-mode recurrent landmark generator, producing a set of landmark sequences still associated to the given smile class but clearly distinct from each other. Finally, these landmark sequences are translated into face videos. Our experimental results demonstrate the effectiveness of our CMM-Net in generating realistic videos of multiple smile expressions.Comment: Accepted as a poster in Conference on Computer Vision and Pattern Recognition (CVPR), 201

    Fader Networks: Manipulating Images by Sliding Attributes

    Get PDF
    This paper introduces a new encoder-decoder architecture that is trained to reconstruct images by disentangling the salient information of the image and the values of attributes directly in the latent space. As a result, after training, our model can generate different realistic versions of an input image by varying the attribute values. By using continuous attribute values, we can choose how much a specific attribute is perceivable in the generated image. This property could allow for applications where users can modify an image using sliding knobs, like faders on a mixing console, to change the facial expression of a portrait, or to update the color of some objects. Compared to the state-of-the-art which mostly relies on training adversarial networks in pixel space by altering attribute values at train time, our approach results in much simpler training schemes and nicely scales to multiple attributes. We present evidence that our model can significantly change the perceived value of the attributes while preserving the naturalness of images.Comment: NIPS 201

    Disentangling Factors of Variation by Mixing Them

    Full text link
    We propose an approach to learn image representations that consist of disentangled factors of variation without exploiting any manual labeling or data domain knowledge. A factor of variation corresponds to an image attribute that can be discerned consistently across a set of images, such as the pose or color of objects. Our disentangled representation consists of a concatenation of feature chunks, each chunk representing a factor of variation. It supports applications such as transferring attributes from one image to another, by simply mixing and unmixing feature chunks, and classification or retrieval based on one or several attributes, by considering a user-specified subset of feature chunks. We learn our representation without any labeling or knowledge of the data domain, using an autoencoder architecture with two novel training objectives: first, we propose an invariance objective to encourage that encoding of each attribute, and decoding of each chunk, are invariant to changes in other attributes and chunks, respectively; second, we include a classification objective, which ensures that each chunk corresponds to a consistently discernible attribute in the represented image, hence avoiding degenerate feature mappings where some chunks are completely ignored. We demonstrate the effectiveness of our approach on the MNIST, Sprites, and CelebA datasets.Comment: CVPR 201
    • …
    corecore