741 research outputs found

    Smartphone as a Portable Detector, Analytical Device, or Instrument Interface

    Get PDF
    The Encyclopedia Britannia defines a smartphone as a mobile telephone with a display screen, at the same time serves as a pocket watch, calendar, addresses book and calculator and uses its own operating system (OS). A smartphone is considered as a mobile telephone integrated to a handheld computer. As the market matured, solid-state computer memory and integrated circuits became less expensive over the following decade, smartphone became more computer-like, and more more-advanced services, and became ubiquitous with the introduction of mobile phone networks. The communication takes place for sending and receiving photographs, music, video clips, e-mails and more. The growing capabilities of handheld devices and transmission protocols have enabled a growing number of applications. The integration of camera, access Wi-Fi, payments, augmented reality or the global position system (GPS) are features that have been used for science because the users of smartphone have risen all over the world. This chapter deals with the importance of one of the most common communication channels, the smartphone and how it impregnates in the science. The technological characteristics of this device make it a useful tool in social sciences, medicine, chemistry, detections of contaminants, pesticides, drugs or others, like so detection of signals or image

    Smartphone-based colorimetric sensor application for measuring biochemical material concentration

    Get PDF
    In this paper, colorimetric analysis for biochemical samples has been realized, by developing an easy-to-use smartphone colorimetric sensing android application that can measure the molar concentration of the biochemical liquid analyte. The designed application can be used for on-site testing and measurement. We examined three different biochemical materials with the application after preparation with five different concentrations and testing in laboratory settings, namely glucose, triglycerides, and urea. Our results showed that for glucose triglycerides, and urea the absorbance and transmittance regression coefficient (R2) for the colorimetric sensing application were 0.9825, and 0.9899; 0.9405 and 0.9502; 0.9431 and 0.8597, respectively. While for the spectrophotometer measurement the (R2) values were 0.9973 @560 nm and 0.9793 @600 nm; 0.952 @620 nm and 0.9364 @410 nm; 0.9948 @570 nm and 0.9827 @530 nm, respectively. The novelty of our study lies in the accurate prediction of multiple biochemical materials concentrations in various lightning effects, reducing the measurement time in an easy-to-use portable environment without the need for internet access, also tackling various issues that arise in the traditional measurements like power consumption, heating, and calibration. The ability to convey multiple tasks, prediction of concentration, measurement of both absorbance and transmittance, with error estimation charts and (R2) values reporting within the colorimetric sensing application as far as our knowledge there has not been any application that can provide all the capabilities of our application

    Review—Lab-in-a-Mouth and Advanced Point-of-Care Sensing Systems: Detecting Bioinformation from the Oral Cavity and Saliva

    Get PDF
    Cavitas sensors and point-of-need sensors capable of providing physical and biochemical information from the oral cavity and saliva have attracted great attention because they offer remarkable advantages for noninvasive sensing systems. Herein, we introduce the basic anatomy and physiology of important body cavities to understand their characteristics as it is a pivotal foundation for the successful development of in-mouth devices. Next, the advanced development in lab-in-a-mouth sensors and point-of-need sensors for analyzing saliva are explained. In addition, we discuss the integrations of artificial intelligence and electronic technologies in smart sensing networks for healthcare systems. This review ends with a discussion of the challenges, future research trends, and opportunities in relevant disciplines. Mouthguard-based sensors and conventional salivary sensing devices will continue to be significant for the progress in the next-generation sensing technologies and smart healthcare systems.ope

    Smartphone-based chemiluminescent origami ”pad for the rapid assessment of glucose blood levels

    Get PDF
    Microfluidic paper analytical devices (”PADs) represent one of the most appealing trends in the development of simple and inexpensive analytical systems for diagnostic applications at the point of care (POC). Herein, we describe a smartphone-based origami ”PAD for the quantitative determination of glucose in blood samples based on the glucose oxidase-catalyzed oxidation of glucose leading to hydrogen peroxide, which is then detected by means of the luminol/hexacyanoferrate(III) chemiluminescent (CL) system. By exploiting the foldable ”PAD format, a two-step analytical procedure has been implemented. First, the diluted blood sample was added, and hydrogen peroxide was accumulated, then the biosensor was folded, and a transport buffer was added to bring hydrogen peroxide in contact with CL reagents, thus promoting the CL reaction. To enable POC applicability, the reagents required for the assay were preloaded in the ”PAD so that no chemicals handling was required, and a 3D-printed portable device was developed for measuring the CL emission using the smartphone’s CMOS camera. The ”PAD was stable for 30-day storage at room temperature and the assay, displaying a limit of detection of 10 ”mol L−1, proved able to identify both hypoglycemic and hyperglycemic blood samples in less than 20 min

    Wearable bio and chemical sensors

    Get PDF
    Chemical and biochemical sensors have experienced tremendous growth in the past decade due to advances in material chemistry combined with the emergence of digital communication technologies and wireless sensor networks (WSNs) [1]. The emergence of wearable chemical and biochemical sensors is a relatively new concept that poses unique challenges to the field of wearable sensing. This is because chemical sensors have a more complex mode of operation, compared to physical transducers, in that they must interact in some manner with specific molecular targets in the sample medium. To understand the challenges in developing wearable chemical and biochemical sensors the traits of these devices will be discussed in this introductory section. Following this the potential parameters of interest are presented and examples of wearable systems are discussed. A range of sampling techniques and methods of chemical sensing are presented along with integration issues and design challenges. Finally, some of the main application areas of this novel technology are discussed

    Analytical Challenges in Diabetes Management: Towards Glycated Albumin Point-of-Care Detection

    Get PDF
    Diabetes mellitus is a worldwide-spread chronic metabolic disease that occurs when the pancreas fails to produce enough insulin levels or when the body fails to effectively use the secreted pancreatic insulin, eventually resulting in hyperglycemia. Systematic glycemic control is the only procedure at our disposal to prevent diabetes long-term complications such as cardiovascular disorders, kidney diseases, nephropathy, neuropathy, and retinopathy. Glycated albumin (GA) has recently gained more and more attention as a control biomarker thanks to its shorter lifespan and wider reliability compared to glycated hemoglobin (HbA1c), currently the “gold standard” for diabetes screening and monitoring in clinics. Various techniques such as ion exchange, liquid or affinity-based chromatography and immunoassay can be employed to accurately measure GA levels in serum samples; nevertheless, due to the cost of the lab equipment and complexity of the procedures, these methods are not commonly available at clinical sites and are not suitable to home monitoring. The present review describes the most up-to-date advances in the field of glycemic control biomarkers, exploring in particular the GA with a special focus on the recent experimental analysis techniques, using enzymatic and affinity methods. Finally, analysis steps and fundamental reading technologies are integrated into a processing pipeline, paving the way for future point-of-care testing (POCT). In this view, we highlight how this setup might be employed outside a laboratory environment to reduce the time from measurement to clinical decision, and to provide diabetic patients with a brand-new set of tools for glycemic self-monitoring

    A Non-invasive Approach to Detection Blood Glucose Levels with Hand Skin Image Processing Using Smartphone

    Get PDF
    Measuring blood sugar levels today still use invasive techniques that are painful so non-invasive monitoring is needed. This study aims to develop a non-invasive technique to identify and detect blood glucose through hand-skin image processing. This development method is by taking invasive blood glucose hand images and 30 participants aged 20-60 years, data analysis is done by image preprocessing, determining the Gray level co-occurrence matrix (GLCM) value, using the backpropagation algorithm to conduct training and data testing. to define a blood glucose monitoring model. The blood glucose detection model is implemented through the android operating system on smartphones by developing the GULAABLE application on smartphones which is simple and easy to use and without blood sampling. This GULAABLE application is to determine the condition of low or high blood glucose and can be used routinely at a low cost. Validating the results by identifying this non-invasive application compared with the results of invasive glucose measurements by applying to 10 participants, the identification results show an accuracy of 80%, so it can be concluded that the GULAABLE application method on smartphones can be used to monitor blood glucose conditions at any time by simply taking hand skin image

    Hybrid point-of-care devices for visual detection of biomarkers and drugs

    Get PDF
    Early diagnostics is a crucial part of clinical practice offering a rapid and convenient way to investigate and quantify the presence of key biomarkers related to specific pathologies and increasing the chance of successful treatments. In this regard, point-of-care testing (POCT) shows several advantages enabling simple and rapid analyses, allowing for real-time results, and permitting home testing. Metallic nanoparticles (NPs), like gold NPs (AuNPs), can be beneficially integrated into POC devices thanks to their tunable plasmonic properties which provide a naked-eye read-out. Moreover, the high sensitivity of NPs enables the detection of biomarkers in non-invasive fluids where the concentrations are typically low. These biofluids, like saliva and urine, are functionally equivalent to serum in reflecting the physiological state of the body, whilst they are easier to handle, collect, and store. In this thesis, I first reported the design and development of a colorimetric strategy based on the morphological change of multibranched plasmonic AuNPs, aimed at detecting glucose in saliva. The sensing approach relied on a target-induced reshaping process which involves the oxidation of the NP tips and the transformation into a spherical shape, characterized by a naked-eye detectable blue-to-pink color change. The platform proved to be beneficial in the early and non-invasive diagnosis of hyperglycemia. The successful technological transfer on a solid substrate paved the way for the realization of a dipstick prototype for home testing. Then, the strategy was adapted to other biomarkers, leading to the development of a multiplexing test for the simultaneous detection of three salivary analytes (cholesterol, glucose, and lactate). This multiplexing assay enabled to save reagents, costs, and time, whilst increasing the overall clinical value of the test. Exploiting the microfluidics applied on a paper sheet, I realized a monolithic and fully integrated POC device, through a low-cost and fast CO2 laser cutter. The platform showed excellent selectivity and multiplexing ability, with negligible interferences. The second part of my thesis was focused on the development of POC devices for the detection of anticancer drug contaminations in water solutions and urine samples. Antiblastic agents have revealed high toxicity for the exposed healthcare workers who prepare and administer these drugs in occupational environments. Hence, continuous monitoring is highly required, and POCT shows tremendous potential in this context. With this aim, I realized a lateral-flow (LF) device for the assessment of doxorubicin contamination, using the fluorescent properties of the drug for naked-eye detection. The pharmacological recognition of the DNA probe was exploited to overcome the lack of anti-doxorubicin antibodies. The highly sensitive strategy was successfully adapted to a real urine sample, without resorting to complex pretreatment procedures. Then, I developed a competitive LF device for the detection of methotrexate (MTX). AuNPs were employed as the label molecules and the pharmacological competition of folic acid and MTX for the capture enzyme was exploited as the recognition mechanism, instead of costly antibodies. Despite the sensitivity requires further improvements, the strategy showed fast and reliable results, demonstrating a high potential for workers’ safety control

    Multiplex, Enzyme-free, Colorimetric Paper-based Device for the Measurement of Glucose, Uric Acid and Cholesterol

    Get PDF
    The rise in the prevalence of chronic illnesses in under-developed countries, such as Diabetes mellitus, increases the necessity for diagnosis and medical treatment in these areas. According to the World Health Organization (WHO), diabetes is one of the most prevalente diseases globally, with close to 400 million patients, being predicted that this number will rise in the future. Consequently, there is the necessity to create alternatives that combat the lack of accessibility to medical facilities and increase the efficiency in diagnosis and treatment. In this context, precise and accessible measurement of relevant biomarkers, for diabetes and other complications, is of extreme importance. The creation of point-f-care devices, produced from a versatile and abundant material such as paper, in combination with enzyme-free, colorimetric detection methods, paired with information systems such as smartphones, stand out as a simple, robust and low-cost alternative, which allows for quantitative results in a short period of time. Especially, the potential to create multiplex sensors, measuring various markers simultaneously, using the same biological sample, brings a significant improvement in the efficiency of these measurements. The main goal for this dissertation work is, then, to develop a multiplex biosensor, able to simultaneously measure physiological concentrations of glucose, uric acid and cholesterol. To do so, Lab-on-Paper technology was employed, to create paper-based devices, using hydrophobic wax printing to develop microfluidic channels. This device is paired with enzyme-free detection methods, based on the use of gold nanoparticles, which are manipulated to show affinity towards these biomarkers. The developed multiplex sensor results from the application of recognition assays in paper substrate, using the colorimetric properties of reactions between the target analytes and gold nanoparticles. These assays were tested with solutions of different concentrations inside each respective physiological range. These tests were submitted to digital analysis, resulting in calibration curves which allow for the extrapolation of concentrations for each of the biomarkers, in a simple, fast and economical way
    • 

    corecore