304 research outputs found

    A Survey of Green Networking Research

    Full text link
    Reduction of unnecessary energy consumption is becoming a major concern in wired networking, because of the potential economical benefits and of its expected environmental impact. These issues, usually referred to as "green networking", relate to embedding energy-awareness in the design, in the devices and in the protocols of networks. In this work, we first formulate a more precise definition of the "green" attribute. We furthermore identify a few paradigms that are the key enablers of energy-aware networking research. We then overview the current state of the art and provide a taxonomy of the relevant work, with a special focus on wired networking. At a high level, we identify four branches of green networking research that stem from different observations on the root causes of energy waste, namely (i) Adaptive Link Rate, (ii) Interface proxying, (iii) Energy-aware infrastructures and (iv) Energy-aware applications. In this work, we do not only explore specific proposals pertaining to each of the above branches, but also offer a perspective for research.Comment: Index Terms: Green Networking; Wired Networks; Adaptive Link Rate; Interface Proxying; Energy-aware Infrastructures; Energy-aware Applications. 18 pages, 6 figures, 2 table

    Achieving Energy Saving through Proxying Applications on behalf of Idle Devices

    Get PDF
    AbstractSeveral studies in the past have revealed that network end user devices are left powered up 24/7 even when idle just for the sake of maintaining Internet connectivity. Network devices normally support low power states but are kept inactive due to their inability to maintain network connectivity. The Network Connectivity Proxy (NCP) has recently been proposed as an effective mechanism to impersonate network connectivity on behalf of high power devices and enable them to sleep when idle without losing network presence. The NCP can efficiently proxy basic networking protocol, however, proxying of Internet based applications have no absolute solution due to dynamic and non-predictable nature of the packets they are sending and receiving periodically. This paper proposes an approach for proxying Internet based applications and presents the basic software architectures and capabilities. Further, this paper also practically evaluates the proposed framework and analyzes expected energy savings achievable under- different realistic conditions

    PoliSave: Efficient Power Management of Campus PCs

    Get PDF
    In this paper we study the power consumption of networked devices in a large Campus network, focusing mainly on PC usage. We first define a methodology to monitor host power state, which we then apply to our Campus network. Results show that typically people refrain from turning off their PC during non-working hours so that more than 1500 PCs are always powered on, causing a large energy waste. We then design PoliSave, a simple web-based architecture which allows users to schedule power state of their PCs, avoiding the frustration of wasting long power-down and bootstrap times of today PCs. By exploiting already available technologies like Wake-On-Lan, Hibernation and Web services, PoliSave reduces the average PC uptime from 15.9h to 9.7h during working days, generating an energy saving of 0.6kW/h per PC per day, or a saving of more than 250,000 Euros per year considering our Campus Universit

    Network enabled partial reconfiguration for distributed FPGA edge acceleration

    Get PDF
    Partial reconfiguration supports virtualisation of applications on FPGAs, enabling compute to dynamically adapt to workloads in distributed infrastructure and datecenters. While the latter often makes use of the PCIe interface and supporting infrastructure to allocate and load compute kernels via a host CPU, FPGAs are becoming increasingly popular as standalone resources in edge-computing, requiring them to manage ac- celerators autonomously. This paper presents a platform that supports the managing of accelerator bitstreams over the network interface on a Xilinx Zynq device without intervention by the Arm processor. We compare against traditional vendor provided PR management for both library accelerators and custom acceler- ators and show that we achieve a 29% decrease in reconfiguration trigger latency using this approach

    E-Net-Manager: a Power Management System for Networked PCs based on Soft Sensors

    Get PDF
    The overall energy consumption due to ICT equipment has followed an increasing trend over the last years. A considerable fraction of the consumed energy is caused by user devices, such as Personal Computers (PCs) and displays. However, a large part of this energy is wasted due to an inefficient use. Users leave their PCs on for long periods even when unused, especially in workplaces. Hence, significant energy savings could be achieved just turning them off. However, it is not wise to rely on user collaboration, and, thus, automated tools are needed. In this paper, we present E-Net-Manager, a power management system for large environments, which turns unused PCs off and switches them on when the user is about to use them. To this end, E-Net-Manager leverages soft sensors, i.e., software/hardware tools already in use by the users, thus not introducing any additional cost. E-Net-Manager combines information provided by the users and data obtained from a number of these soft sensors. This way, it is possible to accurately determine the user presence/activity near her/his PC and, therefore, eliminate wastes also due to short periods of inactivity
    corecore