5,705 research outputs found

    Design and evaluation of an architecture for future smart grid service provisioning

    Get PDF
    In recent years, there has been a growing interest in cloud technologies. Using current cloud solutions, it is however difficult to create customizable multi-tenant applications, especially if the application must support varying Quality of Service (QoS) guarantees. Software Product Line Engineering (SPLE) and feature modeling techniques are commonly used to address these issues in non-cloud applications, but these techniques cannot be ported directly to a cloud context, as the common approaches are geared towards customization of on-premise deployed applications, and do not support multi-tenancy. In this paper, we propose an architecture for the development and management of customizable Software as a Service (SaaS) applications, built using SPLE techniques. In our approach, each application is a composition of services, where individual services correspond to specific application functionalities, referred to as features. A feature-based methodology is described to abstract and convert the application information required at different stages of the application life-cycle: development, customization and deployment. We specifically focus on how development feature models can be adapted ensuring a one-to-one correspondence between features and services exists, ensuring the composition of services yields an application containing the corresponding features. These runtime features can then be managed using feature placement techniques. The proposed approach enables developers to define significantly less features, while limiting the amount of automatically generated features in the application runtime stage. Conversion times between models are shown to be in the order of milliseconds, while execution times of management algorithms are shown to improve by 5 to 17% depending on the application case

    Secure Communication Architecture for Dynamic Energy Management in Smart Grid

    Get PDF
    open access articleSmart grid takes advantage of communication technologies for efficient energy management and utilization. It entails sacrifice from consumers in terms of reducing load during peak hours by using a dynamic energy pricing model. To enable an active participation of consumers in load management, the concept of home energy gateway (HEG) has recently been proposed in the literature. However, the HEG concept is rather new, and the literature still lacks to address challenges related to data representation, seamless discovery, interoperability, security, and privacy. This paper presents the design of a communication framework that effectively copes with the interoperability and integration challenges between devices from different manufacturers. The proposed communication framework offers seamless auto-discovery and zero- con figuration-based networking between heterogeneous devices at consumer sites. It uses elliptic-curve-based security mechanism for protecting consumers' privacy and providing the best possible shield against different types of cyberattacks. Experiments in real networking environment validated that the proposed communication framework is lightweight, secure, portable with low-bandwidth requirement, and flexible to be adopted for dynamic energy management in smart grid

    Development of Economic Water Usage Sensor and Cyber-Physical Systems Co-Simulation Platform for Home Energy Saving

    Get PDF
    In this thesis, two Cyber-Physical Systems (CPS) approaches were considered to reduce residential building energy consumption. First, a flow sensor was developed for residential gas and electric storage water heaters. The sensor utilizes unique temperature changes of tank inlet and outlet pipes upon water draw to provide occupant hot water usage. Post processing of measured pipe temperature data was able to detect water draw events. Conservation of energy was applied to heater pipes to determine relative internal water flow rate based on transient temperature measurements. Correlations between calculated flow and actual flow were significant at a 95% confidence level. Using this methodology, a CPS water heater controller can activate existing residential storage water heaters according to occupant hot water demand. The second CPS approach integrated an open-source building simulation tool, EnergyPlus, into a CPS simulation platform developed by the National Institute of Standards and Technology (NIST). The NIST platform utilizes the High Level Architecture (HLA) co-simulation protocol for logical timing control and data communication. By modifying existing EnergyPlus co-simulation capabilities, NIST’s open-source platform was able to execute an uninterrupted simulation between a residential house in EnergyPlus and an externally connected thermostat controller. The developed EnergyPlus wrapper for HLA co-simulation can allow active replacement of traditional real-time data collection for building CPS development. As such, occupant sensors and simple home CPS product can allow greater residential participation in energy saving practices, saving up to 33% on home energy consumption nationally

    Supporting high penetrations of renewable generation via implementation of real-time electricity pricing and demand response

    Get PDF
    The rollout of smart meters raises the prospect that domestic customer electrical demand can be responsive to changes in supply capacity. Such responsive demand will become increasingly relevant in electrical power systems, as the proportion of weather-dependent renewable generation increases, due to the difficulty and expense of storing electrical energy. One method of providing response is to allow direct control of customer devices by network operators, as in the UK 'Economy 7' and 'White Meter' schemes used to control domestic electrical heating. However, such direct control is much less acceptable for loads such as washing machines, lighting and televisions. This study instead examines the use of real-time pricing of electricity in the domestic sector. This allows customers to be flexible but, importantly, to retain overall control. A simulation methodology for highlighting the potential effects of, and possible problems with, a national implementation of real-time pricing in the UK domestic electricity market is presented. This is done by disaggregating domestic load profiles and then simulating price-based elastic and load-shifting responses. Analysis of a future UK scenario with 15 GW wind penetration shows that during low-wind events, UK peak demand could be reduced by 8-11 GW. This could remove the requirement for 8-11 GW of standby generation with a capital cost of £2.6 to £3.6 billion. Recommended further work is the investigation of improved demand-forecasting and the price-setting strategies. This is a fine balance between giving customers access to plentiful, cheap energy when it is available, but increasing prices just enough to reduce demand to meet the supply capacity when this capacity is limited

    Smart Grid Communications: Overview of Research Challenges, Solutions, and Standardization Activities

    Full text link
    Optimization of energy consumption in future intelligent energy networks (or Smart Grids) will be based on grid-integrated near-real-time communications between various grid elements in generation, transmission, distribution and loads. This paper discusses some of the challenges and opportunities of communications research in the areas of smart grid and smart metering. In particular, we focus on some of the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management. Finally, we also discuss the coordinated standardization efforts in Europe to harmonize communications standards and protocols.Comment: To be published in IEEE Communications Surveys and Tutorial

    A Wireless Sensor Network for Cold-Chain Monitoring

    Get PDF
    This paper deals with a wireless sensor network that was specifically designed to monitor temperature-sensitive products during their distribution with the aim of conforming to the cold-chain assurance requirements. The measurement problems and the constraints that have been encountered in this application are initially highlighted, and then, an architecture that takes such problems into account is proposed. The proposed architecture is based on specifically designed measuring nodes that are inserted into the products to identify their behavior under real operating conditions, e.g., during a typical distribution. Such product nodes communicate through a wireless channel with a base station, which collects and processes the data sent by all the nodes. A peculiarity of the product nodes is the low cost, which allows the information on the cold-chain integrity to be provided to the final customer. The results that refer to the functional tests of the proposed system and to the experimental tests performed on a refrigerated vehicle during a distribution are reporte
    corecore