1,256 research outputs found

    Smart Voltage-Source Inverters with a Novel Approach to Enhance Neutral-Current Compensation

    Full text link
    © 1982-2012 IEEE. The presence of a neutral current is quite common in three-phase (3P) four-wire (4W) distribution systems due to an unequal distribution of linear and nonlinear single-phase (1P) loads and small distributed generators. However, a high neutral current can overload the neutral conductor and distribution transformer, which can cause electrical safety concerns and even fire. Among several existing neutral current compensators, the 3P four-leg (4L) voltage-source inverter (VSI) provides better control flexibility and more efficient performance than the passive compensators but requires a higher VSI capacity for the fourth-leg operation. To provide a solution to the aforementioned problem, this paper presents a novel control method to utilize the available capacity of a 3P-4L VSI after active and reactive power regulation to enhance the neutral-current compensation. A smart VSI (SVSI) is designed to operate with a solar photovoltaic unit, regulate the ac side voltage, and minimize the neutral current. Case studies are conducted with actual load data from a commercial building in the PSCAD/EMTDC software environment. The designed system with the proposed control method can provide a significant improvement in the neutral-current compensation, phase balancing, and unbalance factor compared to a fixed-capacity 3P-4L SVSI. Experimental results using a TMS320F28335 digital signal processor microcontroller and modified Semiteach 3P-4L inverter are presented to verify the robustness of the designed controller and the enhancement to the neutral-current compensation using the proposed dynamic capacity-control method

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15

    A survey on modeling of microgrids - from fundamental physics to phasors and voltage sources

    Get PDF
    Microgrids have been identified as key components of modern electrical systems to facilitate the integration of renewable distributed generation units. Their analysis and controller design requires the development of advanced (typically model-based) techniques naturally posing an interesting challenge to the control community. Although there are widely accepted reduced order models to describe the dynamic behavior of microgrids, they are typically presented without details about the reduction procedure---hampering the understanding of the physical phenomena behind them. Preceded by an introduction to basic notions and definitions in power systems, the present survey reviews key characteristics and main components of a microgrid. We introduce the reader to the basic functionality of DC/AC inverters, as well as to standard operating modes and control schemes of inverter-interfaced power sources in microgrid applications. Based on this exposition and starting from fundamental physics, we present detailed dynamical models of the main microgrid components. Furthermore, we clearly state the underlying assumptions which lead to the standard reduced model with inverters represented by controllable voltage sources, as well as static network and load representations, hence, providing a complete modular model derivation of a three-phase inverter-based microgrid

    Controle coordenado em microrredes de baixa tensão baseado no algoritmo power-based control e conversor utility interface

    Get PDF
    Orientadores: José Antenor Pomilio, Fernando Pinhabel MarafãoTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Esta tese apresenta uma possível arquitetura e sua respectiva estratégia de controle para microrredes de baixa tensão, considerando-se a existência de geradores distribuídos pela rede. A técnica explora totalmente a capacidade dos geradores distribuídos em ambos os modos de operação: conectado à rede e ilhado. Quando conectado à rede, sob o modo de otimização global, o controle busca a operação quase ótima da microrrede, reduzindo as perdas de distribuição e os desvios de tensão. Quando em modo ilhado, a técnica regula de forma eficaz os geradores distribuídos disponíveis, garantindo a operação autônoma, segura e suave da microrrede. A estratégia de controle é aplicada a uma estrutura de microrrede completamente despachável, baseada em uma arquitetura de controle mestre-escravo, em que as unidades distribuídas são coordenadas por meio do recém-desenvolvido algoritmo Power-Based Control. As principais vantagens da arquitetura proposta são a expansividade e a capacidade de operar sem sincronização ou sem conhecimento das impedâncias de linha. Além disso, a microrrede regula as interações com a rede por meio do conversor chamado de Utility Interface, o qual é um inversor trifásico com armazenador de energia. Esta estrutura de microrrede permite algumas vantagens como: compensação de desbalanço e reativo, rápida resposta aos transitórios de carga e de rede, e suave transição entre os modos de operação. Em contrapartida, para compartilhar a potência ativa e reativa proporcionalmente entre as unidades distribuídas, controlar a circulação de reativos, e maximizar a operação, a comunicação da microrrede requer em um canal de comunicação confiável, ainda que sem grandes exigências em termos de resolução ou velocidade de transmissão. Neste sentido, foi demonstrado que uma falha na comunicação não colapsa o sistema, apenas prejudica o modo de otimização global. Entretanto, o sistema continua a operar corretamente sob o modo de otimização local, que é baseado em um algoritmo de programação linear que visa otimizar a compensação de reativos, harmônicos e desbalanço de cargas por meio dos gerador distribuído, particularmente, quando sua capacidade de potência é limitada. Esta formulação consiste em atingir melhores índices de qualidade de energia, definidos pelo lado da rede e dentro de uma região factível em termos de capacidade do conversor. Baseado nas medições de tensão e corrente de carga e uma determinada função objetiva, o algoritmo rastreia as correntes da rede ótima, as quais são utilizadas para calcular os coeficientes escalares e finalmente estes são aplicados para encontrar as referências da corrente de compensação. Finalmente, ainda é proposta uma técnica eficiente para controlar os conversores monofásicos conectados arbitrariamente ao sistema de distribuição trifásico, sejam conectados entre fase e neutro ou entre fase e fase, com o objetivo de compensar o desbalanço de carga e controlar o fluxo de potência entre as diferentes fases da microrrede. Isto melhora a qualidade da energia elétrica no ponto de acoplamento comum, melhora o perfil de tensão nas linhas, e reduz as perdas de distribuição. A arquitetura da microrrede e a estratégia de controle foi analisada e validada através de simulações computacionais e resultados experimentais, sob condições de tensão senoidal/simétrica e não-senoidal/assimétrica, avaliando-se o comportamento em regime permanente e dinâmico do sistema. O algoritmo de programação linear que visa otimizar a compensação foi analisado por meio de resultados de simulaçãoAbstract: This thesis presents a flexible and robust architecture and corresponding control strategy for modern low voltage microgrids with distributed energy resources. The strategy fully exploits the potential of distributed energy resources, under grid-connected and islanded operating modes. In grid-connected mode, under global optimization mode, the control strategy pursues quasi-optimum operation of the microgrid, so as to reduce distribution loss and voltage deviations. In islanded mode, it effectively manages any available energy source to ensure a safe and smooth autonomous operation of the microgrid. Such strategy is applied to a fully-dispatchable microgrid structure, based on a master-slave control architecture, in which the distributed units are coordinated by means of the recently developed power-based control. The main advantages of the proposed architecture are the scalability (plug-and-play) and capability to run the distributed units without synchronization or knowledge of line impedances. Moreover, the proposed microgrid topology manages promptly the interaction with the mains by means of a utility interface, which is a grid-interactive inverter equipped with energy storage. This allows a number of advantages, including compensation of load unbalance, reduction of harmonic injection, fast reaction to load and line transients, and smooth transition between operating mode. On the other hand, in order to provide demand response, proportional power sharing, reactive power control, and full utilization of distributed energy resources, the microgrid employs a reliable communication link with limited bit rate that does not involve time-critical communications among distributed units. It has been shown that a communication failure does not jeopardize the system, and just impairs the global optimization mode. However, the system keeps properly operating under the local optimization mode, which is managed by a linear algorithm in order to optimize the compensation of reactive power, harmonic distortion and load unbalance by means of distributed electronic power processors, for example, active power filters and other grid-connected inverters, especially when their capability is limited. It consists in attain several power quality performance indexes, defined at the grid side and within a feasible power region in terms of the power converter capability. Based on measured load quantities and a certain objective function, the algorithm tracks the expected optimal source currents, which are thereupon used to calculate some scaling coefficients and, therefore, the optimal compensation current references. Finally, the thesis also proposes an efficient technique to control single-phase converters, arbitrarily connected to a three-phase distribution system (line-to-neutral or line-to-line), aiming for reduce unbalance load and control the power flow among different phases. It enhances the power quality at the point-of-common-coupling of the microgrid, improve voltage profile through the lines, and reduce the overall distribution loss. The master-slave microgrid architecture has been analyzed and validated by means of computer simulations and experimental results under sinusoidal/symmetrical and nonsinusoidal/asymmetrical voltage conditions, considering both the steady-state and dynamic performances. The local optimization mode, i.e., linear algorithm for optimized compensation, has been analyzed by simulation resultsDoutoradoEnergia EletricaDoutor em Engenharia Elétrica2012/24309-8, 2013/21922-3FAPES

    Low-voltage ride-through for a three-phase four-leg photovoltaic system using SRFPI control strategy

    Get PDF
    With the innovative progresses in power electronics in recent years, photovoltaic (PV) systems emerged as one of the promising sources for electricity generation at the distribution network. Nonetheless, connection of PV power plants to the utility grid under abnormal conditions has become a significant issue and novel grid codes should be recommend. The low-voltage ride-through (LVRT) capability is one of the challenges faced by the integration of PV power stations into electrical grid under abnormal conditions. This work firstly provides a discussion on recent control schemes for PV power plants to enhance the LVRT capabilities. Next, a control scheme for a three-phase four-leg grid-connected PV inverter under unbalanced grid fault conditions using synchronous reference frame proportional integral (SRFPI) controller is proposed. Simulation studies are performed to investigate the influence of the control strategy on the PV inverter

    Principle and Control Design of Active Ground-Fault Arc Suppression Device for Full Compensation of Ground Current

    Get PDF

    Mitigation of Power Quality Problems Using Custom Power Devices: A Review

    Get PDF
    Electrical power quality (EPQ) in distribution systems is a critical issue for commercial, industrial and residential applications. The new concept of advanced power electronic based Custom Power Devices (CPDs) mainly distributed static synchronous compensator (D-STATCOM), dynamic voltage restorer (DVR) and unified power quality conditioner (UPQC) have been developed due to lacking the performance of traditional compensating devices to minimize power quality disturbances. This paper presents a comprehensive review on D-STATCOM, DVR and UPQC to solve the electrical power quality problems of the distribution networks. This is intended to present a broad overview of the various possible DSTATCOM, DVR and UPQC configurations for single-phase (two wire) and three-phase (three-wire and four-wire) networks and control strategies for the compensation of various power quality disturbances. Apart from this, comprehensive explanation, comparison, and discussion on D-STATCOM, DVR, and UPQC are presented. This paper is aimed to explore a broad prospective on the status of D-STATCOMs, DVRs, and UPQCs to researchers, engineers and the community dealing with the power quality enhancement. A classified list of some latest research publications on the topic is also appended for a quick reference
    corecore