11,713 research outputs found

    Power quality disturbances assessment during unintentional islanding scenarios. A contribution to voltage sag studies

    Get PDF
    This paper presents a novel voltage sag topology that occurs during an unintentional islanding operation (IO) within a distribution network (DN) due to large induction motors (IMs). When a fault occurs, following the circuit breaker (CB) fault clearing, transiently, the IMs act as generators due to their remanent kinetic energy until the CB reclosing takes place. This paper primarily contributes to voltage sag characterization. Therefore, this novel topology is presented, analytically modelled and further validated. It is worth mentioning that this voltage sag has been identified in a real DN in which events have been recorded for two years. The model validation of the proposed voltage sag is done via digital simulations with a model of the real DN implemented in Matlab considering a wide range of scenarios. Both simulations and field measurements confirm the voltage sag analytical expression presented in this paper as well as exhibiting the high accuracy achieved in the three-phase model adopted.Postprint (published version

    PMU-Based ROCOF Measurements: Uncertainty Limits and Metrological Significance in Power System Applications

    Full text link
    In modern power systems, the Rate-of-Change-of-Frequency (ROCOF) may be largely employed in Wide Area Monitoring, Protection and Control (WAMPAC) applications. However, a standard approach towards ROCOF measurements is still missing. In this paper, we investigate the feasibility of Phasor Measurement Units (PMUs) deployment in ROCOF-based applications, with a specific focus on Under-Frequency Load-Shedding (UFLS). For this analysis, we select three state-of-the-art window-based synchrophasor estimation algorithms and compare different signal models, ROCOF estimation techniques and window lengths in datasets inspired by real-world acquisitions. In this sense, we are able to carry out a sensitivity analysis of the behavior of a PMU-based UFLS control scheme. Based on the proposed results, PMUs prove to be accurate ROCOF meters, as long as the harmonic and inter-harmonic distortion within the measurement pass-bandwidth is scarce. In the presence of transient events, the synchrophasor model looses its appropriateness as the signal energy spreads over the entire spectrum and cannot be approximated as a sequence of narrow-band components. Finally, we validate the actual feasibility of PMU-based UFLS in a real-time simulated scenario where we compare two different ROCOF estimation techniques with a frequency-based control scheme and we show their impact on the successful grid restoration.Comment: Manuscript IM-18-20133R. Accepted for publication on IEEE Transactions on Instrumentation and Measurement (acceptance date: 9 March 2019

    Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication

    Full text link
    The adoption of a Reconfigurable Intelligent Surface (RIS) for downlink multi-user communication from a multi-antenna base station is investigated in this paper. We develop energy-efficient designs for both the transmit power allocation and the phase shifts of the surface reflecting elements, subject to individual link budget guarantees for the mobile users. This leads to non-convex design optimization problems for which to tackle we propose two computationally affordable approaches, capitalizing on alternating maximization, gradient descent search, and sequential fractional programming. Specifically, one algorithm employs gradient descent for obtaining the RIS phase coefficients, and fractional programming for optimal transmit power allocation. Instead, the second algorithm employs sequential fractional programming for the optimization of the RIS phase shifts. In addition, a realistic power consumption model for RIS-based systems is presented, and the performance of the proposed methods is analyzed in a realistic outdoor environment. In particular, our results show that the proposed RIS-based resource allocation methods are able to provide up to 300%300\% higher energy efficiency, in comparison with the use of regular multi-antenna amplify-and-forward relaying.Comment: Accepted by IEEE TWC; additional materials on the topic are included in the 2018 conference publications at ICASSP (https://ieeexplore.ieee.org/abstract/document/8461496) and GLOBECOM 2018 (arXiv:1809.05397

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    Quantifying Potential Energy Efficiency Gain in Green Cellular Wireless Networks

    Full text link
    Conventional cellular wireless networks were designed with the purpose of providing high throughput for the user and high capacity for the service provider, without any provisions of energy efficiency. As a result, these networks have an enormous Carbon footprint. In this paper, we describe the sources of the inefficiencies in such networks. First we present results of the studies on how much Carbon footprint such networks generate. We also discuss how much more mobile traffic is expected to increase so that this Carbon footprint will even increase tremendously more. We then discuss specific sources of inefficiency and potential sources of improvement at the physical layer as well as at higher layers of the communication protocol hierarchy. In particular, considering that most of the energy inefficiency in cellular wireless networks is at the base stations, we discuss multi-tier networks and point to the potential of exploiting mobility patterns in order to use base station energy judiciously. We then investigate potential methods to reduce this inefficiency and quantify their individual contributions. By a consideration of the combination of all potential gains, we conclude that an improvement in energy consumption in cellular wireless networks by two orders of magnitude, or even more, is possible.Comment: arXiv admin note: text overlap with arXiv:1210.843
    • …
    corecore