21 research outputs found

    Towards wearable spectroscopy bioimpedance applications: power management for a battery driven impedance meter

    Get PDF
    Projecte realitat en col.laboració amb el centre Hogskolan i Boras (Suècia)In recent years, due to the combination of technological advances in the fields of measurement instrumentation, communications, home-health care and textile-technology the development of medical devices has shifted towards applications of personal healthcare. There are well known the available solutions for heart rate monitoring successfully provided by Polar and Numetrex. Furthermore new monitoring applications are also investigated. Among these non-invasive monitoring applications, it is possible to find several ones enable by measurements of Electrical Bioimpedance. Analog Devices has developed the AD5933 Impedance Network Analyzer which facilitates to a large extent the design and implementation of Electrical Bioimpedance Spectrometers in a much reduced space. Such small size allows the development of a fully wearable bioimpedance measurement. With the development of a Electrical Bioimpedance-enable wearable medical device in focus for personal healthcare monitoring, in this project, the issue of power management has been targeted and a battery-driven Electrical Bioimpedance Spectrometer based in the AD5933 has been implemented. The resulting system has the possibility to operate with a Li-Po battery with a power autonomy over 17 hours

    Bioimpedance sensor and methodology for acute pain monitoring

    Get PDF
    The paper aims to revive the interest in bioimpedance analysis for pain studies in communicating and non-communicating (anesthetized) individuals for monitoring purpose. The plea for exploitation of full potential offered by the complex (bio)impedance measurement is emphasized through theoretical and experimental analysis. A non-invasive, low-cost reliable sensor to measure skin impedance is designed with off-the-shelf components. This is a second generation prototype for pain detection, quantification, and modeling, with the objective to be used in fully anesthetized patients undergoing surgery. The 2D and 3D time-frequency, multi-frequency evaluation of impedance data is based on broadly available signal processing tools. Furthermore, fractional-order impedance models are implied to provide an indication of change in tissue dynamics correlated with absence/presence of nociceptor stimulation. The unique features of the proposed sensor enhancements are described and illustrated here based on mechanical and thermal tests and further reinforced with previous studies from our first generation prototype

    Energy-Efficient PRBS Impedance Spectroscopy on a Digital Versatile Platform

    Get PDF
    partially_open6siThis research has been partially funded by the Italian Ministry of University and Research (MUR) through the program “Dipartimenti di Eccellenza” (2018-2022). The research has also received partial support from the Italian Ministry of University and Research (MUR) and the Eranet FLAG ERA initiative within CONVERGENCE project (CUP B84I16000030005) through the IUNET Consortium.This paper presents the digital design of a versatile and low-power broadband impedance spectroscopy (IS) system based on pseudo-random binary sequence (PRBS) excitation. The PRBS technique allows fast, and low-power estimation of the impedance spectrum over a wide bandwidth with adequate accuracy, proving to be a good candidate for portable medical devices, especially. This paper covers the low-power design of the firmware algorithms and implements them on a versatile and reconfigurable digital platform that can be easily adjusted to the specific application. It will analyze the digital platform with the aim of reducing power consumption while maintaining adequate accuracy of the estimated spectrum. The paper studies two main algorithms (time-domain and frequency-domain) used for PRBS-based IS and implements both of them on the ultra-low-power GAP-8 digital platform. They are compared in terms of accuracy, measurement time, and power budget, while general design trade-offs are drawn out. The time-domain algorithm demonstrated the best accuracy while the frequency-domain one contributes more to save power and energy. However, analysis of the energy-per-error FOM revealed that the time-domain algorithm outperforms the frequency-domain algorithm offering better accuracy for the same energy consumption. Numerical methods and microprocessor resources are exploited to optimize the implementation of both algorithms achieving 27 ms in processing time, power consumption as low as 1.4 mW and a minimum energy consumption per measurement of 0.5 mJ, for a dense impedance spectrum estimation of 214 points.embargoed_20210525Luciani G.; Crescentini M.; Romani A.; Chiani M.; Benini L.; Tartagni M.Luciani G.; Crescentini M.; Romani A.; Chiani M.; Benini L.; Tartagni M

    Development of a Novel Medical Device for Mucositis and Peri-Implantitis Treatment

    Get PDF
    In spite of all the developments in dental implantology techniques, peri-implant diseases are frequent (prevalence up to 80% and 56% of subjects for mucositis and peri-implantitis, respectively) and there is an urgency for an effective treatment strategy. This paper presents an innovative electromedical device for the electromagnetic treatment of mucositis and peri-implantitis diseases. This device is also equipped with a measurement part for bioimpedance, which reflects the health conditions of a tissue, thus allowing clinicians to objectively detect impaired areas and to monitor the severity of the disease, evaluate the treatment efficacy, and adjust it accordingly. The design of the device was realized considering literature data, clinical evidence, numerical simulation results, and electromagnetic compatibility (EMC) pre-compliance tests, involving both clinicians and engineers, to better understand all the needs and translate them into design requirements. The reported system is being tested in more than 50 dental offices since 2019, providing efficient treatments for mucositis and peri-implantitis, with success rates of approximately 98% and 80%, respectively

    Poster Communications ICD Granada 2016

    Full text link

    30th European Congress on Obesity (ECO 2023)

    Get PDF
    This is the abstract book of 30th European Congress on Obesity (ECO 2023
    corecore