259,728 research outputs found

    Smart home energy management

    Get PDF
    The new challenges on Information and Communication Technologies (ICT) in Automatic Home Systems (AHS) focus on the methods useful to monitor, control, and optimize the data management flow and the use of energy. An AHS is a residential dwelling, in some cases with a garden or an outdoor space, equipped with sensors and actuators to collect data and send controls according to the activities and expectations of the occupants/users. Home automation provides a centralized or distributed control of electrical appliances. Adding intelligence to the home environment, it would be possible to obtain, not only excellent levels of comfort, but also energy savings both inside and outside the dwelling, for instance using smart solutions for the management of the external lights and of the garden

    Model Driven Evolution of an Agent-Based Home Energy Management System

    Get PDF
    Advanced smart home appliances and new models of energy tariffs imposed by energy providers pose new challenges in the automation of home energy management. Users need some assistant tool that helps them to make complex decisions with different goals, depending on the current situation. Multi-agent systems have proved to be a suitable technology to develop self-management systems, able to take the most adequate decision under different context-dependent situations, like the home energy management. The heterogeneity of home appliances and also the changes in the energy policies of providers introduce the necessity of explicitly modeling this variability. But, multi-agent systems lack of mechanisms to effectively deal with the different degrees of variability required by these kinds of systems. Software Product Line technologies, including variability models, has been successfully applied to different domains to explicitly model any kind of variability. We have defined a software product line development process that performs a model driven generation of agents embedded in heterogeneous smart objects with different degrees of self-management. However, once deployed, the home energy assistant system has to be able to evolve to self-adapt its decision making or devices to new requirements. So, in this paper we propose a model driven mechanism to automatically manage the evolution of multi-agent systems distributed among several devices.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Smart homes, control and energy management:How do smart home technologies influence control over energy use and domestic life?

    Get PDF
    By introducing new ways of automatically and remotely controlling domestic environments smart technologies have the potential to significantly improve domestic energy management. It is argued that they will simplify users’ lives by allowing them to delegate aspects of decision-making and control - relating to energy management, security, leisure and entertainment etc. - to automated smart home systems. Whilst such technologically-optimistic visions are seductive to many, less research attention has so far been paid to how users interact with and make use of the advanced control functionality that smart homes provide within already complex everyday lives. What literature there is on domestic technology use and control, shows that control is a complex and contested concept. Far from merely controlling appliances, householders are also concerned about a wide range of broader understandings of control relating, for example, to control over security, independence, hectic schedules and even over other household members such as through parenting or care relationships. This paper draws on new quantitative and qualitative data from 4 homes involved in a smart home field trial that have been equipped with smart home systems that provide advanced control functionality over appliances and space heating. Quantitative data examines how householders have used the systems both to try and improve their energy efficiency but also for purposes such as enhanced security or scheduling appliances to align with lifestyles. Qualitative data (from in-depth interviews) explores how smart technologies have impacted upon, and were impacted by, broader understandings of control within the home. The paper concludes by proposing an analytical framework for future research on control in the smart home

    Integration of Legacy Appliances into Home Energy Management Systems

    Full text link
    The progressive installation of renewable energy sources requires the coordination of energy consuming devices. At consumer level, this coordination can be done by a home energy management system (HEMS). Interoperability issues need to be solved among smart appliances as well as between smart and non-smart, i.e., legacy devices. We expect current standardization efforts to soon provide technologies to design smart appliances in order to cope with the current interoperability issues. Nevertheless, common electrical devices affect energy consumption significantly and therefore deserve consideration within energy management applications. This paper discusses the integration of smart and legacy devices into a generic system architecture and, subsequently, elaborates the requirements and components which are necessary to realize such an architecture including an application of load detection for the identification of running loads and their integration into existing HEM systems. We assess the feasibility of such an approach with a case study based on a measurement campaign on real households. We show how the information of detected appliances can be extracted in order to create device profiles allowing for their integration and management within a HEMS

    A Case Study of Load Scheduling For Home Energy Management with Integrated Renewable Energy

    Get PDF
    Smart grids are very comprehensive systems where each sub-unit from generation to consumption should be considered separately. Home energy management systems and demand-side load management applications are also among the most important issues of smart grid systems. In this study, a smart home energy management model was developed in this concept, and energy management solutions were presented through an exemplary model. For this purpose, a home energy management algorithm was developed and simulated in the MATLAB Simulink environment by taking an apartment in Esenler, Istanbul as a reference. The smart home model discussed in this simulation study can generate its own electricity with renewable energy sources, store excess electrical energy in battery groups and also sell the surplus to the grid. This home model also enables end-users to control peak loads and schedule home appliances, especially during peak hours, following a demand-response program to consume energy more efficiently. Then, in order to see the electricity consumption results, electricity bill calculations were made according to both single and triple tariff pricing. The benefits of this model to the consumer and the grid were investigated, and also its effects on efficiency were examined. The results are given comparatively and the consumer’s saving is depicted in figures

    Smart Homes and Sustainable Cities: The Design of a Low-Cost Solution for Comprehensive Home Automation

    Get PDF
    The challenge for smart cities is to connect as many of its inhabitants to technology enabling solutions that improve their lives. Smart homes provide all users a means of interacting and impacting their environment. In developing economies this proves challenging and these challenges are daunting and overwhelming since system costs are always a foreboding factor. The chapter addresses these challenges by providing a low-cost solution for a home energy saving measure. It introduces an overview of enabling technologies for a smart home by considering energy management, energy saving, load management and monitoring and control of living spaces. By leveraging the application of the Internet of Things (IoT) and load management strategies, the realisation of a smart home is made possible. This chapter presents a broad overview of the design and development of a web-enabled smart home solution. Web development and control systems together form the backbone of automation for modern home automation technologies such as the Internet of Things and embedded systems. The developed web-enabled home automation incorporates elements of web developed software application and digital control systems. The web-enabled interface energy saving measure is a networked system that uses web-enabled applications for enabling energy efficiency by incorporating load management, remote power consumption, monitoring and control

    Energy consumption management in Smart Homes: An M-Bus communication system

    Get PDF
    Energy consumption management in Smart Home environments relies on the implementation of systems of cooperative intelligent objects named Smart Meters. In order for devices to cooperate to smart metering applications' execution, they need to make their information available. In this paper we propose a framework that aims at managing energy consumption of controllable appliances in groups of Smart Homes belonging to the same neighbourhood or condominium. We consider not only electric power distribution, but also alternative energy sources such as solar panels. We define a communication paradigm based on M-Bus for the acquisition of relevant data by managing nodes. We also provide a lightweight algorithm for the distribution of the available alternative power among houses. Performance evaluation of experiments in simulation mode prove that the proposed framework does not jeopardise the lifetime of Smart Meters, particularly in typical situations where managed devices do not continuously turn on and off

    Wireless sensor networks and advanced metering infrastructure deployment in smart grid

    Get PDF
    The increasing demand for has necessitated the introduction of information and communication technologies (ICT) in the development of the smart grid. Advanced Metering Infrastructure (AMI) and Wireless Sensor Networks (WSNs) are contributing technologies. In this paper, a review on AMI and WSN in the smart grid is carried out. Also, the introduction of WSNs with AMI in the in-home energy management system of the smart grid is also presented with challenges faced in the deployment of WSNs for the smart grid. The low power and low-cost nature of WSN has presented itself as a technology that can be used with AMI and smart home appliances in achieving home energy management within the great goal of the smart grid
    • …
    corecore