1,188 research outputs found

    Lightweight Blockchain Framework for Location-aware Peer-to-Peer Energy Trading

    Full text link
    Peer-to-Peer (P2P) energy trading can facilitate integration of a large number of small-scale producers and consumers into energy markets. Decentralized management of these new market participants is challenging in terms of market settlement, participant reputation and consideration of grid constraints. This paper proposes a blockchain-enabled framework for P2P energy trading among producer and consumer agents in a smart grid. A fully decentralized market settlement mechanism is designed, which does not rely on a centralized entity to settle the market and encourages producers and consumers to negotiate on energy trading with their nearby agents truthfully. To this end, the electrical distance of agents is considered in the pricing mechanism to encourage agents to trade with their neighboring agents. In addition, a reputation factor is considered for each agent, reflecting its past performance in delivering the committed energy. Before starting the negotiation, agents select their trading partners based on their preferences over the reputation and proximity of the trading partners. An Anonymous Proof of Location (A-PoL) algorithm is proposed that allows agents to prove their location without revealing their real identity. The practicality of the proposed framework is illustrated through several case studies, and its security and privacy are analyzed in detail

    An Architecture for Distributed Energies Trading in Byzantine-Based Blockchain

    Full text link
    With the development of smart cities, not only are all corners of the city connected to each other, but also connected from city to city. They form a large distributed network together, which can facilitate the integration of distributed energy station (DES) and corresponding smart aggregators. Nevertheless, because of potential security and privacy protection arisen from trustless energies trading, how to make such energies trading goes smoothly is a tricky challenge. In this paper, we propose a blockchain-based multiple energies trading (B-MET) system for secure and efficient energies trading by executing a smart contract we design. Because energies trading requires the blockchain in B-MET system to have high throughput and low latency, we design a new byzantine-based consensus mechanism (BCM) based on node's credit to improve efficiency for the consortium blockchain under the B-MET system. Then, we take combined heat and power (CHP) system as a typical example that provides distributed energies. We quantify their utilities, and model the interactions between aggregators and DESs in a smart city by a novel multi-leader multi-follower Stackelberg game. It is analyzed and solved by reaching Nash equilibrium between aggregators, which reflects the competition between aggregators to purchase energies from DESs. In the end, we conduct plenty of numerical simulations to evaluate and verify our proposed model and algorithms, which demonstrate their correctness and efficiency completely

    Blockchain and internet of things for electrical energy decentralization: A review and system architecture

    Get PDF
    Decentralization in electrical power grids has gained increasing importance, especially in the last two decades, since transmission system operators (TSO), distribution system operators (DSO) and consumers are more aware of energy efficiency and energy sustainability issues. Therefore, globally, due to the introduction of energy production technologies near the consumers, in residential and industrial sectors, new scenarios of decentralized energy production (DEP) are emerging. To guarantee an adequate power management in the electrical power grids, incorporating producers, consumers, and producers-consumers, commonly designated as prosumers together, it is important to adopt intelligent systems and platforms that allow the provision of information on energy consumption and production in real time, as well as for obtaining the price for the sale and purchase of energy. In this research the literature is analysed to identify the appropriate solutions to implement a decentralized electrical power grid based on sensors, blockchain and smart contracts, evaluating the current state of the art and pilot projects already in place. A conceptual model for a power grid model is presented, with renewable energy production, combining Internet of Things (IoT), blockchain and smart contracts.A descentralização nas redes elétricas ganhou importância crescente, especialmente nas últimas duas décadas, uma vez que os operadores da rede de transporte (ORT), operadores da rede de distribuição (ORD) e consumidores estão mais conscientes das questões de eficiência energética e sustentabilidade energética. Globalmente, devido à introdução de tecnologias de produção de energia junto dos consumidores, nos setores residencial e industrial, estão a surgir novos cenários de produção de energia descentralizada. Para garantir uma adequada gestão de energia nas redes elétricas, integrando produtores, consumidores e produtores-consumidores, vulgarmente designados por prosumers, é importante adotar sistemas e plataformas inteligentes que permitam fornecer informações sobre consumo e produção de energia em tempo real, bem como para obter o preço de compra e venda de energia. Nesta pesquisa, a literatura é analisada para identificar as soluções adequadas para implementar uma rede elétrica descentralizada baseada em sensores, blockchain e contratos inteligentes, avaliando o estado da arte atual e projetos piloto já em curso. É apresentado um modelo conceptual para um modelo de rede elétrica, com produção de energia renovável, combinando Internet das Coisas (IoT), blockchain e contratos inteligentes

    When energy trading meets blockchain in electrical power system: The state of the art

    Get PDF
    With the rapid growth of renewable energy resources, energy trading has been shifting from the centralized manner to distributed manner. Blockchain, as a distributed public ledger technology, has been widely adopted in the design of new energy trading schemes. However, there are many challenging issues in blockchain-based energy trading, e.g., low efficiency, high transaction cost, and security and privacy issues. To tackle these challenges, many solutions have been proposed. In this survey, the blockchain-based energy trading in the electrical power system is thoroughly investigated. Firstly, the challenges in blockchain-based energy trading are identified and summarized. Then, the existing energy trading schemes are studied and classified into three categories based on their main focuses: energy transaction, consensus mechanism, and system optimization. Blockchain-based energy trading has been a popular research topic, new blockchain architectures, models and products are continually emerging to overcome the limitations of existing solutions, forming a virtuous circle. The internal combination of different blockchain types and the combination of blockchain with other technologies improve the blockchain-based energy trading system to better satisfy the practical requirements of modern power systems. However, there are still some problems to be solved, for example, the lack of regulatory system, environmental challenges and so on. In the future, we will strive for a better optimized structure and establish a comprehensive security assessment model for blockchain-based energy trading system.This research was funded by Beijing Natural Science Foundation (grant number 4182060).Scopu

    Peer-to-Peer EnergyTrade: A Distributed Private Energy Trading Platform

    Full text link
    Blockchain is increasingly being used as a distributed, anonymous, trustless framework for energy trading in smart grids. However, most of the existing solutions suffer from reliance on Trusted Third Parties (TTP), lack of privacy, and traffic and processing overheads. In our previous work, we have proposed a Secure Private Blockchain-based framework (SPB) for energy trading to address the aforementioned challenges. In this paper, we present a proof-on-concept implementation of SPB on the Ethereum private network to demonstrates SPB's applicability for energy trading. We benchmark SPB's performance against the relevant state-of-the-art. The implementation results demonstrate that SPB incurs lower overheads and monetary cost for end users to trade energy compared to existing solutions

    An Efficient and Secure Energy Trading Approach with Machine Learning Technique and Consortium Blockchain

    Get PDF
    In this paper, a secure energy trading mechanism based on blockchain technology is proposed. The proposed model deals with energy trading problems such as insecure energy trading and inefficient charging mechanisms for electric vehicles (EVs) in a vehicular energy network (VEN). EVs face two major problems: finding an optimal charging station and calculating the exact amount of energy required to reach the selected charging station. Moreover, in traditional trading approaches, centralized parties are involved in energy trading, which leads to various issues such as increased computational cost, increased computational delay, data tempering and a single point of failure. Furthermore, EVs face various energy challenges, such as imbalanced load supply and fluctuations in voltage level. Therefore, a demand-response (DR) pricing strategy enables EV users to flatten load curves and efficiently adjust electricity usage. In this work, communication between EVs and aggregators is efficiently performed through blockchain. Moreover, a branching concept is involved in the proposed system, which divides EV data into two different branches: a Fraud Chain (F-chain) and an Integrity Chain (I-chain). The proposed branching mechanism helps solve the storage problem and reduces computational time. Moreover, an attacker model is designed to check the robustness of the proposed system against double-spending and replay attacks. Security analysis of the proposed smart contract is also given in this paper. Simulation results show that the proposed work efficiently reduces the charging cost and time in a VEN.publishedVersio
    corecore