92 research outputs found

    A Smart Forwarding in NDN VANET

    Get PDF
    Intelligent Transport System (ITS) applications rely on efficient forwarding or routing ofthe packet. However, routing or forwarding packet in Connected Vehicles is a challenging task and data retrieval rate can be very low due to highly dynamic topology andintermittent connectivity. Most of the routing solutions in the literature are location-based accompanied with limited flooding when location information is not available. For efficient communication and data retrieval in the vehicular network, we propose a hybrid forwarding solution, called CCLF. CCLF takes into account content-based connectivity information, i.e., Interest satisfaction ratio for each name prefix, in its forwarding decisions. To overcome the shortcomings of IP in mobile environment, CCLF is based ona data-centric network called Named Data Network (NDN). By keeping track of content connectivity and giving higher priority to vehicles with better content connectivity to forward Interests, CCLF not only reduces Interest flooding when location information is unknown or inaccurate, but also increases data fetching rate

    Named Data Networking in Vehicular Ad hoc Networks: State-of-the-Art and Challenges

    Get PDF
    International audienceInformation-Centric Networking (ICN) has been proposed as one of the future Internet architectures. It is poised to address the challenges faced by today's Internet that include, but not limited to, scalability, addressing, security, and privacy. Furthermore, it also aims at meeting the requirements for new emerging Internet applications. To realize ICN, Named Data Networking (NDN) is one of the recent implementations of ICN that provides a suitable communication approach due to its clean slate design and simple communication model. There are a plethora of applications realized through ICN in different domains where data is the focal point of communication. One such domain is Intelligent Transportation System (ITS) realized through Vehicular Ad hoc NETwork (VANET) where vehicles exchange information and content with each other and with the infrastructure. To date, excellent research results have been yielded in the VANET domain aiming at safe, reliable, and infotainment-rich driving experience. However, due to the dynamic topologies, host-centric model, and ephemeral nature of vehicular communication, various challenges are faced by VANET that hinder the realization of successful vehicular networks and adversely affect the data dissemination, content delivery, and user experiences. To fill these gaps, NDN has been extensively used as underlying communication paradigm for VANET. Inspired by the extensive research results in NDN-based VANET, in this paper, we provide a detailed and systematic review of NDN-driven VANET. More precisely, we investigate the role of NDN in VANET and discuss the feasibility of NDN architecture in VANET environment. Subsequently, we cover in detail, NDN-based naming, routing and forwarding, caching, mobility, and security mechanism for VANET. Furthermore, we discuss the existing standards, solutions, and simulation tools used in NDN-based VANET. Finally, we also identify open challenges and issues faced by NDN-driven VANET and highlight future research directions that should be addressed by the research community

    Routing and Applications of Vehicular Named Data Networking

    Get PDF
    Vehicular Ad hoc NETwork (VANET) allows vehicles to exchange important informationamong themselves and has become a critical component for enabling smart transportation.In VANET, vehicles are more interested in content itself than from which vehicle the contentis originated. Named Data Networking (NDN) is an Internet architecture that concentrateson what the content is rather than where the content is located. We adopt NDN as theunderlying communication paradigm for VANET because it can better address a plethora ofproblems in VANET, such as frequent disconnections and fast mobility of vehicles. However,vehicular named data networking faces the problem of how to efficiently route interestpackets and data packets. To address the problem, we propose a new geographic routing strategy of applying NDNin vehicular networks with Delay Tolerant Networking (DTN) support, called GeoDTN-NDN. We designed a hybrid routing mechanism for solving the flooding issue of forwardinginterest packets and the disruption problem of delivering data packets. To avoid disruptionscaused by routing packets over less-traveled roads, we develop a new progressive segmentrouting approach that takes into consideration how vehicles are distributed among differentroads, with the goal of favoring well-traveled roads. A novel criterion for determiningprogress of routing is designed to guarantee that the destination will be reached no matterwhether a temporary loop may be formed in the path. We also investigate applications of vehicular named data networking. We categorizethese applications into four types and design an NDN naming scheme for them. We proposea fog-computing based architecture to support the smart parking application, which enablesa driver to find a parking lot with available parking space and make reservation for futureparking need. Finally we describe several future research directions for vehicular nameddata networking

    Encaminhamento baseado no contexto em ICNs móveis

    Get PDF
    Over the last couple of decades, vehicular ad hoc networks (VANETs) have been at the forefront of research, yet still are afflicted by high network fragmentation, due to their continuous node mobility and geographical dispersion. To address these concerns, a new paradigm was proposed - Information-Centric Networks(ICN), whose focus is the delivery of Content based on names, being ideal to attend to high latency environments. However, the main proposed solutions for content delivery in ICNs do not take into account the type of content nor the various available communication interfaces in each point of the network, a factor which can be deciding in mobile networks. The scope of this dissertation lies on the use of ICNs concepts for the delivery of both urgent and non-urgent information in urban mobile environments. In order to do so, a context-based forwarding strategy was proposed, with a very clear goal: to take advantage of both packet names and Data, and node's neighborhood analysis in order to successfully deliver content into the network in the shortest period of time, and without worsening network congestion. The design, implementation and validation of the proposed strategy was performed using the ndnSIM platform simulator along with real mobility traces from communication infrastructure of the Porto city. The results show that the proposed context-based forwarding strategy for mobile ICN presents a clear improvement in performance in terms of delivery, while maintaining network overhead at a constant. Furthermore, by means of better pathing and through cooperation with caching mechanisms, lower transmission delays can be attained.Nas últimas décadas, as redes veiculares ad hoc (VANETs) estiveram na vanguarda da pesquisa, mas continuam a ser afetadas por alta fragmentação na rede, devido à mobilidade contínua dos nós e a sua dispersão geográfica. Para abordar estes problemas, um novo paradigma foi proposto - Redes Centradas na Informação (ICN), cujo foco é a entrega de Conteúdo com base em nomes, sendo ideal para atender ambientes de alta latência. No entanto, as principais soluções propostas para entrega de conteúdo em ICNs não têm em conta o tipo de conteúdo nem as várias interfaces de comunicação disponíveis em cada ponto da rede, fator que pode ser determinante em redes móveis. O objetivo desta dissertação reside no uso dos conceitos de ICNs para a entrega de informações urgentes e não urgentes em ambientes móveis urbanos. Para isso, foi proposta uma estratégia de encaminhamento baseada em contexto, com um objetivo muito claro: tirar proveito do nome e dados dos pacotes, e da análise de vizinhança dos nós, com vista em fornecer com êxito o conteúdo para a rede no menor período de tempo e sem piorar o congestionamento da rede. O desenho, implementação e validação da estratégia proposta foram realizados usando o simulador ndnSIM, juntamente com traces reais de mobilidade da infraestrutura de comunicação da cidade do Porto. Os resultados mostram que a estratégia de encaminhamento baseada em contexto proposta para o ICN móvel apresenta uma clara melhoria no desempenho em termos de entrega, mantendo a carga da rede constante. Além disso, através da escolha de melhores caminhos e através da cooperação com mecanismos de armazenamento em cache, é possível alcançar atrasos de transmissão mais baixos.Mestrado em Engenharia de Computadores e Telemátic

    A Review on Forwarding Strategies in NDN based Vehicular Networks

    Get PDF
    Named Data Networking (NDN) is a model that has been proposed by many researchers to alter the long-established IP based networking model. It derives the content centric approach rather than host-based approach. This is gaining even more traction in the wireless network and is able to replace the conventional IP-based networking. Up to now, NDN has proven to be fruitful when used with certain limitations in vehicular networks. Vehicular networks deal with exchanging information across fast moving complex vehicle network topology. The sending and receiving of information in such a scenario acts as a challenge and thus requires an effective forwarding strategy to address this problem. Different research work has provided with multiple forwarding strategy that solves the current problem up to some limit but further research work is still longed for to get an optimum solution. This paper provides a brief survey on current existing forwarding strategies related to vehicular networks using NDN as well as providing information on various resources and technologies used in it

    Lightweight novel trust based framework for IoT enabled wireless network communications

    Get PDF
    For IoT enabled networks, the security and privacy is one of the important research challenge due to open nature of wireless communications, especially for the networks like Vehicular Ad hoc Networks (VANETs). The characteristics like heterogeneity, constrained resources, scalability requirements, uncontrolled environment etc. makes the problems of security and privacy even more challenging. Additionally, the high degree of availability needs of IoT networks may compromise the integrity and confidentially of communication data. The security threats mainly performed during the operations of data routing, hence designing the secure routing protocol main research challenge for IoT networks. In this paper, to design the lightweight security algorithm the use of Named Data Networking (NDN) which provides the benefits applicable for IoT applications like built-in data provenance assurance, stateful forwarding etc. Therefore the novel security framework NDN based Cross-layer Attack Resistant Protocol (NCARP) proposed in this paper. In NCARP, we designed the cross-layer security technique to identify the malicious attackers in network to overcome the problems like routing overhead of cryptography and trust based techniques. The parameters from the physical layer, Median Access Control (MAC) layer, and routing/network layer used to compute and averages the trust score of each highly mobility nodes while detecting the attackers and establishing the communication links. The simulation results of NCARP is measured and compared in terms of precision, recall, throughput, packets dropped, and overhead rate with state-of-art solutions

    CODIE: Controlled Data and Interest Evaluation in Vehicular Named Data Networks

    Full text link
    [EN] Recently, named data networking (NDN) has been proposed as a promising architecture for future Internet technologies. NDN is an extension to the content-centric network (CCN) and is expected to support various applications in vehicular communications [ vehicular NDN (VNDN)]. VNDN basically relies on naming the content rather than using end-to-end device names. In VNDN, a vehicle broadcasts an "Interest" packet for the required "content," regardless of end-to-end connectivity with servers or other vehicles and known as a "consumer." In response, a vehicle with the content replies to the Interest packet with a "Data" packet and named as a "provider." However, the simple VNDN architecture faces several challenges such as consumer/provider mobility and Interest/Data packet(s) forwarding. In VNDN, for the most part, the Data packet is sent along the reverse path of the related Interest packet. However, there is no extensive simulated reference available in the literature to support this argument. In this paper, therefore, we first analyze the propagation behavior of Interest and Data packets in the vehicular ad hoc network (VANET) environment through extensive simulations. Second, we propose the "CODIE" scheme to control the Data flooding/broadcast storm in the naive VNDN. The main idea is to allow the consumer vehicle to start hop counter in Interest packet. Upon receiving this Interest by any potential provider, a data dissemination limit (DDL) value stores the number of hops and a data packet needs to travel back. Simulation results show that CODIE forwards fewer copies of data packets processed (CDPP) while achieving similar interest satisfaction rate (ISR), as compared with the naive VNDN. In addition, we also found that CODIE also minimizes the overall interest satisfaction delay (ISD), respectively.This work was supported by the Ministry of Science, ICT and Future Planning, South Korea, under Grant IITP-2015-H8601-15-1002 of the Convergence Information Technology Research Center supervised by the Institute for Information and Communications Technology Promotion. The review of this paper was coordinated by Editors of CVS. (Corresponding author: Dongkyun Kim.)Ahmed, SH.; Bouk, SH.; Yaqub, MA.; Kim, D.; Song, H.; Lloret, J. (2016). CODIE: Controlled Data and Interest Evaluation in Vehicular Named Data Networks. IEEE Transactions on Vehicular Technology. 65(6):3954-3963. https://doi.org/10.1109/TVT.2016.2558650S3954396365

    Priority-Based Content Delivery in the Internet of Vehicles through Named Data Networking

    Get PDF
    Named Data Networking (NDN) has been recently proposed as a prominent solution for content delivery in the Internet of Vehicles (IoV), where cars equipped with a variety of wireless communication technologies exchange information aimed to support safety, traffic efficiency, monitoring and infotainment applications. The main NDN tenets, i.e., name-based communication and in-network caching, perfectly fit the demands of time- and spatially-relevant content requested by vehicles regardless of their provenance. However, existing vehicular NDN solutions have not been targeted to wisely ensure prioritized traffic treatment based on the specific needs of heterogeneous IoV content types. In this work, we propose a holistic NDN solution that, according to the demands of data traffic codified in NDN content names, dynamically shapes the NDN forwarding decisions to ensure the appropriate prioritization. Specifically, our proposal first selects the outgoing interface(s) (i.e., 802.11, LTE) for NDN packets and then properly tunes the timing of the actual transmissions. Simulation results show that the proposed enhancements succeed in achieving differentiated traffic treatment, while keeping traffic load under control
    corecore