2,299 research outputs found

    Smart Environments Design on Industrial Automated Greenhouses

    Get PDF
    Greenhouse automation carried out with monitoring and control technologies optimizes the cultivation processes in industrial scenarios. In recent years, new trends and technologies have emerged in the agricultural sector. The application of Information and Communication Technologies has clear benefits. Embedded hardware systems development, new communication protocols over the Internet and applied Artificial Intelligence paradigms have increased the services’ capabilities. These technologies can be installed both in new facilities and in facilities that are already functioning. This paper analyses the integration of these paradigms into automated greenhouses. An integration model is proposed and developed in the plant experimental unit installed at the University of Alicante. This unit already has an automated system that controls air conditioning, soil conditions, and irrigation, but these control subsystems are not integrated. In this work, new processing nodes with integrated data are designed to develop new detection, prediction and optimization services. These services increase the performance of the installation and create smart environments in agricultural production.This research was funded by the Industrial Computers and Computer Networks program (Informatica Industrial y redes de Computadores I2RC) (2018/2019) funded by the University of Alicante, Wak9 Holding BV company under the eo-TICC project, and the Valencian Innovation Agency under scientific innovation unit (UCIE Ars Innovatio) of the University of Alicante at https://web.ua.es/es/ars-innovatio/unidad-cientifica-deinnovacion-ars-innovatio.html

    Invernadero inteligente y agricultura 4.0

    Get PDF
    In Colombia, agricultural exports have become notoriously prevalent in recent years, causing the creation of new methods capable of increasing production in order to meet the global demands. A very efficient option is the use of greenhouses, given their low building cost, ease of construction, ability to protect crops from natural phenomena and plagues, and the possibility to keep the internal temperature steady during day and night, thus allowing crops to grow fast and healthy. Nowadays, advancements in electronics have allowed boosting the positive effects of these environments, which is why this document introduces a procedure for the implementation of an automated pyramid-type greenhouse, utilizing techniques related to Precision Agriculture (PA) and based on concepts related to the Internet of Things (IoT) for remote monitoring through emerging communication technologies such as the NFRL2401 cards and the Arduino Nano and Mega boards. Inside the greenhouse, variables such as temperature and ambient humidity are measured and controlled via the PCE-P30U Universal Input Signal Converter Data Logger, while ground humidity is monitored by ZD510 capacitive sensors. Outside, variables such as temperature, ambient humidity, negative and positive pressure, and wind speed are measured. Data obtained is taken wirelessly to the server using Windows Server 2019 Datacenter, with Broker MQTT EMQ-X services and MYSQL databases, providing a suitable and efficient environment for agricultural research processes. With the procedure developed in this document, a baseline is proposed for the implementation of a smart greenhouse that can be replicated and used as a test system for smart sowing processes, adapting to the different climate and production conditions of the country.En Colombia, la exportación agrícola ha crecido en los últimos años, motivando la creación de nuevos métodos que incrementen la producción para satisfacer la demanda mundial. El uso de invernaderos es una opción bastante eficiente, dados sus bajos costos de construcción, su habilidad para proteger cultivos de fenómenos naturales y plagas, y la posibilidad de mantener la temperatura interna estable durante el día y la noche, lo cual hace que el fruto crezca rápido y saludable. En la actualidad, los avances en electrónica han permitido potencializar los efectos positivos de estos espacios, por lo cual en este texto se presenta un procedimiento para la implementación de un invernadero automatizado de tipo piramidal, utilizando técnicas relacionadas con la Agricultura de Precisión (AP) y partiendo de conceptos relacionados con el internet de las cosas (IoT) para el monitoreo remoto a través de tecnologías emergentes de comunicación como las tarjetas NFRL2401 y placas Arduino Nano y Mega. Al interior del invernadero se miden y controlan variables como la temperatura y humedad del ambiente por medio de la PCE-P30U Universal Input Signal Converter Data Logger, mientras que la humedad del suelo es monitoreada por medio de sensores capacitivos ZD510. En el exterior, se miden variables como la temperatura, la humedad del ambiente, presión positiva y negativa y la velocidad del viento. Los datos obtenidos son llevados inalámbricamente a un servidor que utiliza el Windows Server 2019 Datacenter, con servicios Broker MQTT EMQ-X y bases de datos MYSQL, propiciando un ambiente apto y eficiente para la realización de procesos en investigación agrícola. Con el procedimiento desarrollado en este documento, se propone una línea de base para la implementación de un invernadero inteligente que pueda ser replicado y sirva como sistema de prueba en procesos inteligentes de siembra, adaptándose a la diferentes condiciones climáticas y productivas del país

    Evolution of Microcontroller-based Remote Monitoring System Applications

    Get PDF
    This study reviews the evolution of smart applications of microcontroller-based wireless/wired remote monitoring systems. Rapid developments in science and technology offer the advantages of using integrated embedded chips, microprocessors, and microcontrollers. The use of microcontrollers in industrial processes, such as automobiles, aeronautics, space, robotics, electronics, defense applications, mobile communications, rail transport, and medical applications, is rapidly increasing. This study aims to review the progress of microcomputers in smart remote monitoring and controlling applications for the control and management of different systems using wireless/wired technique

    A Review of Wireless Sensor Technologies and Applications in Agriculture and Food Industry: State of the Art and Current Trends

    Get PDF
    The aim of the present paper is to review the technical and scientific state of the art of wireless sensor technologies and standards for wireless communications in the Agri-Food sector. These technologies are very promising in several fields such as environmental monitoring, precision agriculture, cold chain control or traceability. The paper focuses on WSN (Wireless Sensor Networks) and RFID (Radio Frequency Identification), presenting the different systems available, recent developments and examples of applications, including ZigBee based WSN and passive, semi-passive and active RFID. Future trends of wireless communications in agriculture and food industry are also discussed

    A Generic ROS-Based Control Architecture for Pest Inspection and Treatment in Greenhouses Using a Mobile Manipulator

    Get PDF
    To meet the demands of a rising population greenhouses must face the challenge of producing more in a more efficient and sustainable way. Innovative mobile robotic solutions with flexible navigation and manipulation strategies can help monitor the field in real-time. Guided by Integrated Pest Management strategies, robots can perform early pest detection and selective treatment tasks autonomously. However, combining the different robotic skills is an error prone work that requires experience in many robotic fields, usually deriving on ad-hoc solutions that are not reusable in other contexts. This work presents Robotframework, a generic ROS-based architecture which can easily integrate different navigation, manipulation, perception, and high-decision modules leading to a faster and simplified development of new robotic applications. The architecture includes generic real-time data collection tools, diagnosis and error handling modules, and user-friendly interfaces. To demonstrate the benefits of combining and easily integrating different robotic skills using the architecture, two flexible manipulation strategies have been developed to enhance the pest detection in its early state and to perform targeted spraying in simulated and field commercial greenhouses. Besides, an additional use-case has been included to demonstrate the applicability of the architecture in other industrial contexts.This work was supported in part by the GreenPatrol European Project through the European GNSS Agency by the European Union's (EU) Horizon 2020 Research and Innovation Program under Grant 776324 [11]. Documen

    A Systematic Review of IoT Solutions for Smart Farming

    Get PDF
    The world population growth is increasing the demand for food production. Furthermore, the reduction of the workforce in rural areas and the increase in production costs are challenges for food production nowadays. Smart farming is a farm management concept that may use Internet of Things (IoT) to overcome the current challenges of food production. This work uses the preferred reporting items for systematic reviews (PRISMA) methodology to systematically review the existing literature on smart farming with IoT. The review aims to identify the main devices, platforms, network protocols, processing data technologies and the applicability of smart farming with IoT to agriculture. The review shows an evolution in the way data is processed in recent years. Traditional approaches mostly used data in a reactive manner. In more recent approaches, however, new technological developments allowed the use of data to prevent crop problems and to improve the accuracy of crop diagnosis.info:eu-repo/semantics/publishedVersio

    Automatización y control de tecnologías implementadas en invernaderos: una revisión

    Get PDF
    Protected agriculture is a way of producing food by creating a microclimate that allows protecting a crop from the risks inherent in free exposure; in this sense, its purpose is to guarantee the optimal and appropriate conditions of internal variables to generate reproduction, development and growth of plants with quality and commercial opportunity. In this way, the application of technologies to crops has extended considerably due to the need to optimize this productive alternative: in this respect, there are multiple scattered investigations based on particular designs of elements such as greenhouses. Therefore, this article shows a review on protected agriculture aimed at the automation of greenhouses in countries that have implemented emerging technologies in this field and the consequent control generated in the stages of the production cycle through sensors, actuators, specific covers or robots designed to perform tasks such as spraying or harvesting, among others. Key analysis elements are presented on the modeling of the phenomenon that underlies the implementations, so that systems with the necessary adaptation are achieved for any crop, taking into account its type, cost and location, defining a baseline on the technologies that make it functional and efficient.La agricultura protegida es una manera de producir alimentos creando un microclima que permite proteger un cultivo de los riesgos propios de la libre exposición; en este sentido, tiene como finalidad garantizar las condiciones óptimas y apropiadas de variables internas para generar la reproducción, desarrollo y crecimiento de plantas con calidad y oportunidad comercial. De esta manera, la aplicación de tecnologías a cultivos se ha extendido considerablemente por la necesidad de optimizar esta alternativa productiva: al respecto se encuentran múltiples investigaciones dispersas basadas en diseños particulares de elementos como los invernaderos. Por lo anterior, el presente artículo muestra una revisión sobre agricultura protegida orientada a la automatización de invernaderos en los países que han realizado implementaciones de tecnologías emergentes en este campo y el consecuente control generado en las etapas del ciclo productivo a través de sensores, actuadores, cubiertas específicas o robots diseñados para realizar tareas tales como fumigación o cosechado, entre otras. Se presentan elementos de análisis clave sobre el modelamiento del fenómeno que subyace a las implementaciones, de manera que se logren sistemas con la adaptación necesaria para cualquier cultivo teniendo en cuenta su tipo, costo y ubicación, definiendo una línea de base sobre las tecnologías que lo hacen funcional y eficiente

    Development of an IoT-Based PLC Trainer: Bridging the Practical Divide in Industrial Automation Education

    Get PDF
    In the dynamic landscape of digitalization, the fusion of Internet of Things (IoT) tech-nology with Programmable Logic Controllers (PLCs) has emerged as a pivotal avenue, promising enriched practical experiences and heightened comprehension. This paper navi-gates through recent studies elucidating the applications of IoT-based PLCs in diverse con-texts, from smart home automation to traffic control and resource management. Notable contributions include remote monitoring systems, smart traffic control, water level moni-toring, and automated greenhouses. Acknowledging persistent challenges in understanding and implementing PLCs, this research introduces an innovative IoT-based PLC Trainer Kit. The kit aims to elevate prac-tical learning by providing hands-on experiences, refining skills, and optimizing applica-tions across various domains. Emphasizing the pivotal role of practical training in PLC education, the study conducts a needs analysis, followed by the design, development, and testing phases of the IoT-based PLC Trainer. The prototype, employing an Omron CPM1A PLC, pneumatic components, sensors, and an intuitive interface, undergoes meticulous testing, affirming its readiness for deployment. The development of the IoT-based PLC Trainer marks a significant achievement, ad-dressing the gap between theoretical knowledge and practical application. Through metic-ulous design, material selection, and testing, the trainer demonstrates optimal functionali-ty and user-friendliness. Anticipating its deployment in educational institutions and in-dustrial setups, the trainer is poised to contribute to the realm of industrial automation, offering a practical understanding of PLC applications within the Internet of Things con-text. This project not only signifies technical expertise but also bridges the gap between theory and practice in the dynamic domain of IoT-driven programmable logic control-ler

    Internet of Things Applications in Precision Agriculture: A Review

    Get PDF
    The goal of this paper is to review the implementation of an Internet of Things (IoT)-based system in the precision agriculture sector. Each year, farmers suffer enormous losses as a result of insect infestations and a lack of equipment to manage the farm effectively. The selected article summarises the recommended systematic equipment and approach for implementing an IoT in smart farming. This review's purpose is to identify and discuss the significant devices, cloud platforms, communication protocols, and data processing methodologies. This review highlights an updated technology for agricultural smart management by revising every area, such as crop field data and application utilization. By customizing their technology spending decisions, agriculture stakeholders can better protect the environment and increase food production in a way that meets future global demand. Last but not least, the contribution of this research is that the use of IoT in the agricultural sector helps to improve sensing and monitoring of production, including farm resource usage, animal behavior, crop growth, and food processing. Also, it provides a better understanding of the individual agricultural circumstances, such as environmental and weather conditions, the growth of weeds, pests, and diseases

    A Wireless Sensor Network-Based Ubiquitous Paprika Growth Management System

    Get PDF
    Wireless Sensor Network (WSN) technology can facilitate advances in productivity, safety and human quality of life through its applications in various industries. In particular, the application of WSN technology to the agricultural area, which is labor-intensive compared to other industries, and in addition is typically lacking in IT technology applications, adds value and can increase the agricultural productivity. This study attempts to establish a ubiquitous agricultural environment and improve the productivity of farms that grow paprika by suggesting a ‘Ubiquitous Paprika Greenhouse Management System’ using WSN technology. The proposed system can collect and monitor information related to the growth environment of crops outside and inside paprika greenhouses by installing WSN sensors and monitoring images captured by CCTV cameras. In addition, the system provides a paprika greenhouse environment control facility for manual and automatic control from a distance, improves the convenience and productivity of users, and facilitates an optimized environment to grow paprika based on the growth environment data acquired by operating the system
    • …
    corecore