256 research outputs found

    Data-Intensive Computing in Smart Microgrids

    Get PDF
    Microgrids have recently emerged as the building block of a smart grid, combining distributed renewable energy sources, energy storage devices, and load management in order to improve power system reliability, enhance sustainable development, and reduce carbon emissions. At the same time, rapid advancements in sensor and metering technologies, wireless and network communication, as well as cloud and fog computing are leading to the collection and accumulation of large amounts of data (e.g., device status data, energy generation data, consumption data). The application of big data analysis techniques (e.g., forecasting, classification, clustering) on such data can optimize the power generation and operation in real time by accurately predicting electricity demands, discovering electricity consumption patterns, and developing dynamic pricing mechanisms. An efficient and intelligent analysis of the data will enable smart microgrids to detect and recover from failures quickly, respond to electricity demand swiftly, supply more reliable and economical energy, and enable customers to have more control over their energy use. Overall, data-intensive analytics can provide effective and efficient decision support for all of the producers, operators, customers, and regulators in smart microgrids, in order to achieve holistic smart energy management, including energy generation, transmission, distribution, and demand-side management. This book contains an assortment of relevant novel research contributions that provide real-world applications of data-intensive analytics in smart grids and contribute to the dissemination of new ideas in this area

    Using metaheuristics to improve the placement of multi-controllers in software-defined networking enabled clouds

    Get PDF
    SDN is a model that separates the control and the data levels in an arrangement to enhance capability to program and configure the network in a more agile and efficient manner. Multiple controller modules have been used in the SDN engineering to empower programmable and adaptable configurations such as improving scalability and reliability. The distance and time calculations and other performance measures have to be considered in solving the Multi-Controller Position Problem (MCPP). This paper investigates the use of metaheuristic algorithms to build an MCPP mathematical model. Both the symmetric Harmony Search (HS) modelling and the Particle Swarm Optimization (PSO) algorithm are considered in this respect. Thus, our hybrid approach is proposed and known as Harmony Search with Particle Swarm Optimization (HSPSO) is applied and we compared the extracted results with the state-of-the-art techniques in the previous literature. Besides the development of the mathematical model, a simulation study has been done considering the relevant parameters including the link distance description and the access time between the SDN entities. The console simulation uses NetBeans with CloudsimSDN procedure files in the SDN-based cloud environment

    Deep Learning For Resource Constraint Devices

    Get PDF
    The amount of Internet-of-things (IoT) devices is rapidly expanding. This also triggered the necessity of smart IoT devices which are capable of conducting any task by itself. Deep learning techniques are also booming due to the increased computing power and refined algorithms. The advantage of deep learning is that it can be tuned into any application without the manual feature extraction process. Now, the combination of deep learning with smart IoT devices/edge devices can result in any application that can be used in machine vision, vision inspection, autonomous vehicle, and many more. These applications can be automated which requires human operation. Now, combining deep learning and edge device together and running the application can be a difficult task. The main reason is that deep learning requires large computation power and edge devices does not have that capability. This study focused on this problem. Ie used techniques to encrypt and compress data which is essential for the edge devices. In addition, we developed novel methods to protect user privacy for data collection and learning on edge devices. Also, we conducted a study to evaluate different edge devices for different application purposes with certain compression technique of the models. Lastly, we conducted a real life experiment of collecting data, creating different models and evaluating it on different edge devices. index terms - IoT, computer vision, deep learning, machine learning, quantization, autoencoder, mobilenet v1, mobilenet v2, inception v3, face mask detectio

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    Edge-Cloud Polarization and Collaboration: A Comprehensive Survey for AI

    Full text link
    Influenced by the great success of deep learning via cloud computing and the rapid development of edge chips, research in artificial intelligence (AI) has shifted to both of the computing paradigms, i.e., cloud computing and edge computing. In recent years, we have witnessed significant progress in developing more advanced AI models on cloud servers that surpass traditional deep learning models owing to model innovations (e.g., Transformers, Pretrained families), explosion of training data and soaring computing capabilities. However, edge computing, especially edge and cloud collaborative computing, are still in its infancy to announce their success due to the resource-constrained IoT scenarios with very limited algorithms deployed. In this survey, we conduct a systematic review for both cloud and edge AI. Specifically, we are the first to set up the collaborative learning mechanism for cloud and edge modeling with a thorough review of the architectures that enable such mechanism. We also discuss potentials and practical experiences of some on-going advanced edge AI topics including pretraining models, graph neural networks and reinforcement learning. Finally, we discuss the promising directions and challenges in this field.Comment: 20 pages, Transactions on Knowledge and Data Engineerin

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    Energy Harvesting and Energy Storage Systems

    Get PDF
    This book discuss the recent developments in energy harvesting and energy storage systems. Sustainable development systems are based on three pillars: economic development, environmental stewardship, and social equity. One of the guiding principles for finding the balance between these pillars is to limit the use of non-renewable energy sources
    • …
    corecore