2,005 research outputs found

    Combining Blockchain and Swarm Robotics to Deploy Surveillance Missions

    Get PDF
    Current swarm robotics systems are not utilized as frequently in surveillance missions due to the limitations of the existing distributed systems\u27 designs. The main limitation of swarm robotics is the absence of a framework for robots to be self-governing, secure, and scalable. As of today, a swarm of robots is not able to communicate and perform tasks in transparent and autonomous ways. Many believe blockchain is the imminent future of distributed autonomous systems. A blockchain is a system of computers that stores and distributes data among all participants. Every single participant is a validator and protector of the data in the blockchain system. The data cannot be modified since all participants are storing and watching the same records. In this thesis, we will focus on blockchain applications in swarm robotics using Ethereum smart contracts because blockchain can make a swarm globally connected and secure. A decentralized application (DApp) is used to deploy surveillance missions. After mission deployment, the swarm uses blockchain to communicate and make decisions on appropriate tasks within Ethereum private networks. We set a test swarm robotics system and evaluate the blockchain for its performance, scalability, recoverability, and responsiveness. We conclude that, although blockchain enables a swarm to be globally connected and secure, there are performance limitations that can become a critical issue

    Sdhcare: Secured Distributed Healthcare System

    Get PDF
    In the healthcare sector, the move towards Electronic Health Records (EHR) systems has been accelerating in parallel with the increased adoption of IoT and smart devices. This is driven by the anticipated advantages for patients and healthcare providers. The integration of EHR and IoT makes it highly heterogeneous in terms of devices, network standards, platforms, types of data, connectivity, etc. Additionally, it introduces security, patient and data privacy, and trust challenges. To address such challenges, this thesis proposes an architecture that combines biometric-based blockchain technology with the EHR system. More specifically, this thesis describes a mechanism that uses a patient’s fingerprint for recovery of patient’s access control on their EHRs securely without compromising their privacy and identity. A secure distributed healthcare system (SDHCARE) is proposed to uniquely identify patients, enable them to control access to, and ensure recoverable access to their EHRs that are exchanged and synchronized between distributed healthcare providers. The system takes into account the security and privacy requirements of Health Insurance Portability and Accountability Act (HIPAA) compliance, and it overcomes the challenges of using secret keys as a patient’s identity to control access to EHRs. The system used distributed architecture with two layers being local to each healthcare provider that is a member of SDHCARE, and two layers shared across all members of SDCHARE system. SDHCARE system was prototyped and implemented in order to validate its functional requirements, security requirements, and to evaluate its performance. The results indicated successful fulfillment of design requirements without significant overhead on the performance as required by healthcare environment

    Using Blockchain Technology and Smart Contracts for Access Management in IoT devices

    Get PDF
    The Internet of Things is a proliferating industry, which is transforming many homes and businesses, making them smart. However, the rapid growth of these devices and the interactions between these devices, introduces many challenges including that of a secure management system for the identities and interactions of the devices. While the centralized model has worked well for many years, there is a risk of the servers becoming bottlenecks and a single point of failure, thereby making them vulnerable to Denial-of-Service attacks. As a backbone of these interactions, Blockchain is capable of creating a highly secure, independent and distributed platform. Blockchain is a peer to peer, distributed ledger system that stores all the transactions taking place within the network. The main purpose of the servers that form a part of the distributed system is to provide a consensus, using various consensus algorithms, on the state of the blockchain at any given time and to store a copy of all the transactions taking place. This thesis explores the Blockchain technology in general and investigates its potential with regard to access management of constrained devices. A proof of concept system has been designed and implemented that demonstrates a simplified access management system using Ethereum Blockchain. This was done to check whether the concept can be applied at a global level. Although the latency of the network depends on the computing power of the resources participating in the Blockchain, an evaluation of the proof of concept system has been made, keeping in mind the smallest device that can be involved in the consensus process. Docker containers have been used to simulate a cluster of the nodes participating in the Blockchain, in order to examine the implemented system. An outline of the various advantages and the limitations of Blockchains in general, as well as the developed proof of concept system, has also been provided

    Beyond Bitcoin: Issues in Regulating Blockchain Transactions

    Get PDF
    The buzz surrounding Bitcoin has reached a fever pitch. Yet in academic legal discussions, disproportionate emphasis is placed on bitcoins (that is, virtual currency), and little mention is made of blockchain technology—the true innovation behind the Bitcoin protocol. Simply, blockchain technology solves an elusive networking problem by enabling “trustless” transactions: value exchanges over computer networks that can be verified, monitored, and enforced without central institutions (for example, banks). This has broad implications for how we transact over electronic networks. This Note integrates current research from leading computer scientists and cryptographers to elevate the legal community’s understanding of blockchain technology and, ultimately, to inform policymakers and practitioners as they consider different regulatory schemes. An examination of the economic properties of a blockchain-based currency suggests the technology’s true value lies in its potential to facilitate more efficient digital-asset transfers. For example, applications of special interest to the legal community include more efficient document and authorship verification, title transfers, and contract enforcement. Though a regulatory patchwork around virtual currencies has begun to form, its careful analysis reveals much uncertainty with respect to these alternative applications
    corecore