29,307 research outputs found

    Privacy-enhancing Aggregation of Internet of Things Data via Sensors Grouping

    Full text link
    Big data collection practices using Internet of Things (IoT) pervasive technologies are often privacy-intrusive and result in surveillance, profiling, and discriminatory actions over citizens that in turn undermine the participation of citizens to the development of sustainable smart cities. Nevertheless, real-time data analytics and aggregate information from IoT devices open up tremendous opportunities for managing smart city infrastructures. The privacy-enhancing aggregation of distributed sensor data, such as residential energy consumption or traffic information, is the research focus of this paper. Citizens have the option to choose their privacy level by reducing the quality of the shared data at a cost of a lower accuracy in data analytics services. A baseline scenario is considered in which IoT sensor data are shared directly with an untrustworthy central aggregator. A grouping mechanism is introduced that improves privacy by sharing data aggregated first at a group level compared as opposed to sharing data directly to the central aggregator. Group-level aggregation obfuscates sensor data of individuals, in a similar fashion as differential privacy and homomorphic encryption schemes, thus inference of privacy-sensitive information from single sensors becomes computationally harder compared to the baseline scenario. The proposed system is evaluated using real-world data from two smart city pilot projects. Privacy under grouping increases, while preserving the accuracy of the baseline scenario. Intra-group influences of privacy by one group member on the other ones are measured and fairness on privacy is found to be maximized between group members with similar privacy choices. Several grouping strategies are compared. Grouping by proximity of privacy choices provides the highest privacy gains. The implications of the strategy on the design of incentives mechanisms are discussed

    Reuse potential assessment framework for gamification-based smart city pilots

    Get PDF
    The paper proposes a unified framework for assessing the re-use potential for the Smart Engagement Pilot currently being realized in the city of Ghent (Belgium). The pilot aims to stimulate the digital engagement in users (citizens) by involving them in online and offline communities, and increasing the social capital through the use of ICT (Information and Communications Technology). To engage the citizens, the pilot makes use of Gamification based entities (intelligent wireless sensors) embedded in public hardware, through which innovative games are organized in places of interest (neighbourhood, parks, schools, etc.). Once finished, this pilot will be re-used in other European cities under the context of CIP SMART IP project. Since, the success of a pilot in one city doesn't guarantee its success in the other, an objective socio-economic-organizational reuse assessment becomes critical. To do this assessment, we propose a framework, which uses a Key Performance Indicator (KPI) based scorecard to determine the roadblocks and battlefields that could deter such a transition

    Green Electricity and Transportation (GET) Smart: Policy Solutions to Increase Energy Independence

    Get PDF
    Ohioans spend a large amount of money on energy. In 2010, we spent 45billion,nearly10percentofourstate′sgrossdomesticproduct.Nearlyhalfofthoseenergydollars(ormorethan45 billion, nearly 10 percent of our state's gross domestic product. Nearly half of those energy dollars (or more than 20 billion) was spent to fuel cars, trucks, and buses, and nearly all of which left the state or country in order to import oil. Ohio can reduce its dependence on imported oil by promoting electric vehicles (EVs) and buses, as well as passenger and freight rail

    Securing the Participation of Safety-Critical SCADA Systems in the Industrial Internet of Things

    Get PDF
    In the past, industrial control systems were ‘air gapped’ and isolated from more conventional networks. They used specialist protocols, such as Modbus, that are very different from TCP/IP. Individual devices used proprietary operating systems rather than the more familiar Linux or Windows. However, things are changing. There is a move for greater connectivity – for instance so that higher-level enterprise management systems can exchange information that helps optimise production processes. At the same time, industrial systems have been influenced by concepts from the Internet of Things; where the information derived from sensors and actuators in domestic and industrial components can be addressed through network interfaces. This paper identifies a range of cyber security and safety concerns that arise from these developments. The closing sections introduce potential solutions and identify areas for future research
    • …
    corecore