299 research outputs found

    iURBAN

    Get PDF
    iURBAN: Intelligent Urban Energy Tool introduces an urban energy tool integrating different ICT energy management systems (both hardware and software) in two European cities, providing useful data to a novel decision support system that makes available the necessary parameters for the generation and further operation of associated business models. The business models contribute at a global level to efficiently manage and distribute the energy produced and consumed at a local level (city or neighbourhood), incorporating behavioural aspects of the users into the software platform and in general prosumers. iURBAN integrates a smart Decision Support System (smartDSS) that collects real-time or near real-time data, aggregates, analyses and suggest actions of energy consumption and production from different buildings, renewable energy production resources, combined heat and power plants, electric vehicles (EV) charge stations, storage systems, sensors and actuators. The consumption and production data is collected via a heterogeneous data communication protocols and networks. The iURBAN smartDSS through a Local Decision Support System allows the citizens to analyse the consumptions and productions that they are generating, receive information about CO2 savings, advises in demand response and the possibility to participate actively in the energy market. Whilst, through a Centralised Decision Support System allow to utilities, ESCOs, municipalities or other authorised third parties to: Get a continuous snapshot of city energy consumption and productionManage energy consumption and productionForecasting of energy consumptionPlanning of new energy "producers" for the future needs of the cityVisualise, analyse and take decisions of all the end points that are consuming or producing energy in a city level, permitting them to forecast and planning renewable power generation available in the city

    Mobile Health in Remote Patient Monitoring for Chronic Diseases: Principles, Trends, and Challenges

    Get PDF
    Chronic diseases are becoming more widespread. Treatment and monitoring of these diseases require going to hospitals frequently, which increases the burdens of hospitals and patients. Presently, advancements in wearable sensors and communication protocol contribute to enriching the healthcare system in a way that will reshape healthcare services shortly. Remote patient monitoring (RPM) is the foremost of these advancements. RPM systems are based on the collection of patient vital signs extracted using invasive and noninvasive techniques, then sending them in real-time to physicians. These data may help physicians in taking the right decision at the right time. The main objective of this paper is to outline research directions on remote patient monitoring, explain the role of AI in building RPM systems, make an overview of the state of the art of RPM, its advantages, its challenges, and its probable future directions. For studying the literature, five databases have been chosen (i.e., science direct, IEEE-Explore, Springer, PubMed, and science.gov). We followed the (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) PRISMA, which is a standard methodology for systematic reviews and meta-analyses. A total of 56 articles are reviewed based on the combination of a set of selected search terms including RPM, data mining, clinical decision support system, electronic health record, cloud computing, internet of things, and wireless body area network. The result of this study approved the effectiveness of RPM in improving healthcare delivery, increase diagnosis speed, and reduce costs. To this end, we also present the chronic disease monitoring system as a case study to provide enhanced solutions for RPMsThis research work was partially supported by the Sejong University Research Faculty Program (20212023)S

    Use of Artificial Intelligence in Healthcare Delivery

    Get PDF
    In recent years, there has been an amplified focus on the use of artificial intelligence (AI) in various domains to resolve complex issues. Likewise, the adoption of artificial intelligence (AI) in healthcare is growing while radically changing the face of healthcare delivery. AI is being employed in a myriad of settings including hospitals, clinical laboratories, and research facilities. AI approaches employing machines to sense and comprehend data like humans has opened up previously unavailable or unrecognised opportunities for clinical practitioners and health service organisations. Some examples include utilising AI approaches to analyse unstructured data such as photos, videos, physician notes to enable clinical decision making; use of intelligence interfaces to enhance patient engagement and compliance with treatment; and predictive modelling to manage patient flow and hospital capacity/resource allocation. Yet, there is an incomplete understanding of AI and even confusion as to what it is? Also, it is not completely clear what the implications are in using AI generally and in particular for clinicians? This chapter aims to cover these topics and also introduce the reader to the concept of AI, the theories behind AI programming and the various applications of AI in the medical domain

    Technological solutions for older people with Alzheimer’s disease : Review

    Get PDF
    Funding Information: The authors would like to acknowledge networking support from COST Action CA16226: Indoor living space improvement: Smart Habitat for the Elderly. COST (European Cooperation in Science and Technol-ogy) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation. www.cost.eu. Furthermore, authors acknowledge the internal research project Excellence 2018, Faculty of Informatics and Management, University of Hradec Kralove, Czech Republic. Authors acknowledge the funding provided by FCT through the scholarship SFRH/BPD/115112/2016 (Joana Madureira) as well as to Solange Costa and João Paulo Teixeira, both from EPIUnit – Instituto de Saúde Pública da Universidade do Porto and National Institute of Heath, Environmental Health Department. Authors also acknowledge the funding from the University of Sts. Cyril and Methodius in Skopje, Faculty of Computer Science and Engineering. Publisher Copyright: © 2018 Bentham Science Publishers.In the nineties, numerous studies began to highlight the problem of the increasing number of people with Alzheimer’s disease in developed countries, especially in the context of demographic progress. At the same time, the 21st century is typical of the development of advanced technologies that penetrate all areas of human life. Digital devices, sensors, and intelligent applications are tools that can help seniors and allow better communication and control of their caregivers. The aim of the paper is to provide an up-to-date summary of the use of technological solutions for improving health and safety for people with Alzheimer’s disease. Firstly, the problems and needs of senior citizens with Alzheimer’s disease (AD) and their caregivers are specified. Secondly, a scoping review is performed regarding the technological solutions suggested to assist this specific group of patients. Works obtained from the following libraries are used in this scoping review: Web of Science, PubMed, Springer, ACM and IEEE Xplore. Four independent reviewers screened the identified records and selected relevant articles which were published in the period from 2007 to 2018. A total of 6,705 publications were selected. In all, 128 full papers were screened. Results obtained from the relevant studies were furthermore divided into the following categories according to the type and use of technologies: devices, processing, and activity recognition. The leading technological solution in the category of devices are wearables and ambient non-invasive sensors. The introduction and utilization of these technologies, however, bring about challenges in acceptability, durability, ease of use, communication, and power requirements. Furthermore, it needs to be pointed out that these technological solutions should be based on open standards.publishersversionPeer reviewe

    Artificial Intelligence Research and Its Contributions to the European Union’s Political Governance: Comparative Study between Member States

    Get PDF
    In the last six decades, many advances have been made in the field of artificial intelligence (AI). Bearing in mind that AI technologies are influencing societies and political systems di erently, it can be useful to understand what are the common issues between similar states in the European Union and how these political systems can collaborate with each other, seeking synergies, finding opportunities and saving costs. Therefore, we carried out an exploratory research among similar states of the European Union, in terms of scientific research in areas of AI technologies, namely: Portugal, Greece, Austria, Belgium and Sweden. A key finding of this research is that intelligent decision support systems (IDSS) are essential for the political decision-making process, since politics normally deals with complex and multifaceted decisions, which involve trade-o s between di erent stakeholders. As public health is becoming increasingly relevant in the field of the European Union, the IDSSs can provide relevant contributions, as it may allow sharing critical information and assist in the political decision-making process, especially in response to crisis situations.info:eu-repo/semantics/publishedVersio
    corecore