145 research outputs found

    The Application of Artificial Intelligence in Project Management Research: A Review

    Get PDF
    The field of artificial intelligence is currently experiencing relentless growth, with innumerable models emerging in the research and development phases across various fields, including science, finance, and engineering. In this work, the authors review a large number of learning techniques aimed at project management. The analysis is largely focused on hybrid systems, which present computational models of blended learning techniques. At present, these models are at a very early stage and major efforts in terms of development is required within the scientific community. In addition, we provide a classification of all the areas within project management and the learning techniques that are used in each, presenting a brief study of the different artificial intelligence techniques used today and the areas of project management in which agents are being applied. This work should serve as a starting point for researchers who wish to work in the exciting world of artificial intelligence in relation to project leadership and management

    Self-adaptive step fruit fly algorithm optimized support vector regression model for dynamic response prediction of magnetorheological elastomer base isolator

    Full text link
    © 2016 Elsevier B.V. Parameter optimization of support vector regression (SVR) plays a challenging role in improving the generalization ability of machine learning. Fruit fly optimization algorithm (FFOA) is a recently developed swarm optimization algorithm for complicated multi-objective optimization problems and is also suitable for optimizing SVR parameters. In this work, parameter optimization in SVR using FFOA is investigated. In view of problems of premature and local optimum in FFOA, an improved FFOA algorithm based on self-adaptive step update strategy (SSFFOA) is presented to obtain the optimal SVR model. Moreover, the proposed method is utilized to characterize magnetorheological elastomer (MRE) base isolator, a typical hysteresis device. In this application, the obtained displacement, velocity and current level are used as SVR inputs while the output is the shear force response of the device. Experimental testing of the isolator with two types of excitations is applied for model performance evaluation. The results demonstrate that the proposed SSFFOA-optimized SVR (SSFFOA_SVR) has perfect generalization ability and more accurate prediction accuracy than other machine learning models, and it is a suitable and effective method to predict the dynamic behaviour of MRE isolator

    An innovative metaheuristic strategy for solar energy management through a neural networks framework

    Get PDF
    Proper management of solar energy as an effective renewable source is of high importance toward sustainable energy harvesting. This paper offers a novel sophisticated method for predicting solar irradiance (SIr) from environmental conditions. To this end, an efficient metaheuristic technique, namely electromagnetic field optimization (EFO), is employed for optimizing a neural network. This algorithm quickly mines a publicly available dataset for nonlinearly tuning the network parameters. To suggest an optimal configuration, five influential parameters of the EFO are optimized by an extensive trial and error practice. Analyzing the results showed that the proposed model can learn the SIr pattern and predict it for unseen conditions with high accuracy. Furthermore, it provided about 10% and 16% higher accuracy compared to two benchmark optimizers, namely shuffled complex evolution and shuffled frog leaping algorithm. Hence, the EFO-supervised neural network can be a promising tool for the early prediction of SIr in practice. The findings of this research may shed light on the use of advanced intelligent models for efficient energy development

    Scientific research trends about metaheuristics in process optimization and case study using the desirability function

    Get PDF
    This study aimed to identify the research gaps in Metaheuristics, taking into account the publications entered in a database in 2015 and to present a case study of a company in the Sul Fluminense region using the Desirability function. To achieve this goal, applied research of exploratory nature and qualitative approach was carried out, as well as another of quantitative nature. As method and technical procedures were the bibliographical research, some literature review, and an adopted case study respectively. As a contribution of this research, the holistic view of opportunities to carry out new investigations on the theme in question is pointed out. It is noteworthy that the identified study gaps after the research were prioritized and discriminated, highlighting the importance of the viability of metaheuristic algorithms, as well as their benefits for process optimization

    Invited Review: Recent developments in vibration control of building and bridge structures

    Get PDF
    This paper presents a state-of-the-art review of recent articles published on active, passive, semi-active and hybrid vibration control systems for structures under dynamic loadings primarily since 2013. Active control systems include active mass dampers, active tuned mass dampers, distributed mass dampers, and active tendon control. Passive systems include tuned mass dampers (TMD), particle TMD, tuned liquid particle damper, tuned liquid column damper (TLCD), eddy-current TMD, tuned mass generator, tuned-inerter dampers, magnetic negative stiffness device, resetting passive stiffness damper, re-entering shape memory alloy damper, viscous wall dampers, viscoelastic dampers, and friction dampers. Semi-active systems include tuned liquid damper with floating roof, resettable variable stiffness TMD, variable friction dampers, semi-active TMD, magnetorheological dampers, leverage-type stiffness controllable mass damper, semi-active friction tendon. Hybrid systems include shape memory alloys-liquid column damper, shape memory alloy-based damper, and TMD-high damping rubber

    Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications

    Get PDF
    This article presents a state-of-the-art review of the applications of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) in building and construction industry 4.0 in the facets of architectural design and visualization; material design and optimization; structural design and analysis; offsite manufacturing and automation; construction management, progress monitoring, and safety; smart operation, building management and health monitoring; and durability, life cycle analysis, and circular economy. This paper presents a unique perspective on applications of AI/DL/ML in these domains for the complete building lifecycle, from conceptual stage, design stage, construction stage, operational and maintenance stage until the end of life. Furthermore, data collection strategies using smart vision and sensors, data cleaning methods (post-processing), data storage for developing these models are discussed, and the challenges in model development and strategies to overcome these challenges are elaborated. Future trends in these domains and possible research avenues are also presented

    A review of the use of artificial intelligence methods in infrastructure systems

    Get PDF
    The artificial intelligence (AI) revolution offers significant opportunities to capitalise on the growth of digitalisation and has the potential to enable the ‘system of systems’ approach required in increasingly complex infrastructure systems. This paper reviews the extent to which research in economic infrastructure sectors has engaged with fields of AI, to investigate the specific AI methods chosen and the purposes to which they have been applied both within and across sectors. Machine learning is found to dominate the research in this field, with methods such as artificial neural networks, support vector machines, and random forests among the most popular. The automated reasoning technique of fuzzy logic has also seen widespread use, due to its ability to incorporate uncertainties in input variables. Across the infrastructure sectors of energy, water and wastewater, transport, and telecommunications, the main purposes to which AI has been applied are network provision, forecasting, routing, maintenance and security, and network quality management. The data-driven nature of AI offers significant flexibility, and work has been conducted across a range of network sizes and at different temporal and geographic scales. However, there remains a lack of integration of planning and policy concerns, such as stakeholder engagement and quantitative feasibility assessment, and the majority of research focuses on a specific type of infrastructure, with an absence of work beyond individual economic sectors. To enable solutions to be implemented into real-world infrastructure systems, research will need to move away from a siloed perspective and adopt a more interdisciplinary perspective that considers the increasing interconnectedness of these systems

    Efficient machine learning models for prediction of concrete strengths

    Get PDF
    In this study, an efficient implementation of machine learning models to predict compressive and tensile strengths of high-performance concrete (HPC) is presented. Four predictive algorithms including support vector regression (SVR), multilayer perceptron (MLP), gradient boosting regressor (GBR), and extreme gradient boosting (XGBoost) are employed. The process of hyperparameter tuning is based on random search that results in trained models with better predictive performances. In addition, the missing data is handled by filling with the mean of the available data which allows more information to be used in the training process. The results on two popular datasets of compressive and tensile strengths of high performance concrete show significant improvement of the current approach in terms of both prediction accuracy and computational effort. The comparative studies reveal that, for this particular prediction problem, the trained models based on GBR and XGBoost perform better than those of SVR and MLP

    A Comprehensive Review of Bio-Inspired Optimization Algorithms Including Applications in Microelectronics and Nanophotonics

    Get PDF
    The application of artificial intelligence in everyday life is becoming all-pervasive and unavoidable. Within that vast field, a special place belongs to biomimetic/bio-inspired algorithms for multiparameter optimization, which find their use in a large number of areas. Novel methods and advances are being published at an accelerated pace. Because of that, in spite of the fact that there are a lot of surveys and reviews in the field, they quickly become dated. Thus, it is of importance to keep pace with the current developments. In this review, we first consider a possible classification of bio-inspired multiparameter optimization methods because papers dedicated to that area are relatively scarce and often contradictory. We proceed by describing in some detail some more prominent approaches, as well as those most recently published. Finally, we consider the use of biomimetic algorithms in two related wide fields, namely microelectronics (including circuit design optimization) and nanophotonics (including inverse design of structures such as photonic crystals, nanoplasmonic configurations and metamaterials). We attempted to keep this broad survey self-contained so it can be of use not only to scholars in the related fields, but also to all those interested in the latest developments in this attractive area
    • …
    corecore