992 research outputs found

    Computing a rectilinear shortest path amid splinegons in plane

    Full text link
    We reduce the problem of computing a rectilinear shortest path between two given points s and t in the splinegonal domain \calS to the problem of computing a rectilinear shortest path between two points in the polygonal domain. As part of this, we define a polygonal domain \calP from \calS and transform a rectilinear shortest path computed in \calP to a path between s and t amid splinegon obstacles in \calS. When \calS comprises of h pairwise disjoint splinegons with a total of n vertices, excluding the time to compute a rectilinear shortest path amid polygons in \calP, our reduction algorithm takes O(n + h \lg{n}) time. For the special case of \calS comprising of concave-in splinegons, we have devised another algorithm in which the reduction procedure does not rely on the structures used in the algorithm to compute a rectilinear shortest path in polygonal domain. As part of these, we have characterized few of the properties of rectilinear shortest paths amid splinegons which could be of independent interest

    Ramified rectilinear polygons: coordinatization by dendrons

    Full text link
    Simple rectilinear polygons (i.e. rectilinear polygons without holes or cutpoints) can be regarded as finite rectangular cell complexes coordinatized by two finite dendrons. The intrinsic l1l_1-metric is thus inherited from the product of the two finite dendrons via an isometric embedding. The rectangular cell complexes that share this same embedding property are called ramified rectilinear polygons. The links of vertices in these cell complexes may be arbitrary bipartite graphs, in contrast to simple rectilinear polygons where the links of points are either 4-cycles or paths of length at most 3. Ramified rectilinear polygons are particular instances of rectangular complexes obtained from cube-free median graphs, or equivalently simply connected rectangular complexes with triangle-free links. The underlying graphs of finite ramified rectilinear polygons can be recognized among graphs in linear time by a Lexicographic Breadth-First-Search. Whereas the symmetry of a simple rectilinear polygon is very restricted (with automorphism group being a subgroup of the dihedral group D4D_4), ramified rectilinear polygons are universal: every finite group is the automorphism group of some ramified rectilinear polygon.Comment: 27 pages, 6 figure

    Polygon Exploration with Time-Discrete Vision

    Full text link
    With the advent of autonomous robots with two- and three-dimensional scanning capabilities, classical visibility-based exploration methods from computational geometry have gained in practical importance. However, real-life laser scanning of useful accuracy does not allow the robot to scan continuously while in motion; instead, it has to stop each time it surveys its environment. This requirement was studied by Fekete, Klein and Nuechter for the subproblem of looking around a corner, but until now has not been considered in an online setting for whole polygonal regions. We give the first algorithmic results for this important algorithmic problem that combines stationary art gallery-type aspects with watchman-type issues in an online scenario: We demonstrate that even for orthoconvex polygons, a competitive strategy can be achieved only for limited aspect ratio A (the ratio of the maximum and minimum edge length of the polygon), i.e., for a given lower bound on the size of an edge; we give a matching upper bound by providing an O(log A)-competitive strategy for simple rectilinear polygons, using the assumption that each edge of the polygon has to be fully visible from some scan point.Comment: 28 pages, 17 figures, 2 photographs, 3 tables, Latex. Updated some details (title, figures and text) for final journal revision, including explicit assumption of full edge visibilit

    Evolving fracture patterns: columnar joints, mud cracks, and polygonal terrain

    Get PDF
    When cracks form in a thin contracting layer, they sequentially break the layer into smaller and smaller pieces. A rectilinear crack pattern encodes information about the order of crack formation, as later cracks tend to intersect with earlier cracks at right angles. In a hexagonal pattern, in contrast, the angles between all cracks at a vertex are near 120∘^\circ. However, hexagonal crack patterns are typically only seen when a crack network opens and heals repeatedly, in a thin layer, or advances by many intermittent steps into a thick layer. Here it is shown how both types of pattern can arise from identical forces, and how a rectilinear crack pattern evolves towards a hexagonal one. Such an evolution is expected when cracks undergo many opening cycles, where the cracks in any cycle are guided by the positions of cracks in the previous cycle, but when they can slightly vary their position, and order of opening. The general features of this evolution are outlined, and compared to a review of the specific patterns of contraction cracks in dried mud, polygonal terrain, columnar joints, and eroding gypsum-sand cementsComment: 19 pages, 9 figures, accepted for publication in Phil. Trans. R. Soc. A; theme issue on Geophysical Pattern Formation (to appear 2013

    Mobile vs. point guards

    Get PDF
    We study the problem of guarding orthogonal art galleries with horizontal mobile guards (alternatively, vertical) and point guards, using "rectangular vision". We prove a sharp bound on the minimum number of point guards required to cover the gallery in terms of the minimum number of vertical mobile guards and the minimum number of horizontal mobile guards required to cover the gallery. Furthermore, we show that the latter two numbers can be calculated in linear time.Comment: This version covers a previously missing case in both Phase 2 &

    Flip Distance Between Triangulations of a Simple Polygon is NP-Complete

    Full text link
    Let T be a triangulation of a simple polygon. A flip in T is the operation of removing one diagonal of T and adding a different one such that the resulting graph is again a triangulation. The flip distance between two triangulations is the smallest number of flips required to transform one triangulation into the other. For the special case of convex polygons, the problem of determining the shortest flip distance between two triangulations is equivalent to determining the rotation distance between two binary trees, a central problem which is still open after over 25 years of intensive study. We show that computing the flip distance between two triangulations of a simple polygon is NP-complete. This complements a recent result that shows APX-hardness of determining the flip distance between two triangulations of a planar point set.Comment: Accepted versio
    • …
    corecore