656 research outputs found

    River discharge simulation using variable parameter McCarthy–Muskingum and wavelet-support vector machine methods

    Get PDF
    In this study, an extended version of variable parameter McCarthy–Muskingum (VPMM) method originally proposed by Perumal and Price (J Hydrol 502:89–102, 2013) was compared with the widely used data-based model, namely support vector machine (SVM) and hybrid wavelet-support vector machine (WASVM) to simulate the hourly discharge in Neckar River wherein significant lateral flow contribution by intermediate catchment rainfall prevails during flood wave movement. The discharge data from the year 1999 to 2002 have been used in this study. The extended VPMM method has been used to simulate 9 flood events of the year 2002, and later the results were compared with SVM and WASVM models. The analysis of statistical and graphical results suggests that the extended VPMM method was able to predict the flood wave movement better than the SVM and WASVM models. A model complexity analysis was also conducted which suggests that the two parameter-based extended VPMM method has less complexity than the three parameter-based SVM and WASVM model. Further, the model selection criteria also give the highest values for VPMM in 7 out of 9 flood events. The simulation of flood events suggested that both the approaches were able to capture the underlying physics and reproduced the target value close to the observed hydrograph. However, the VPMM models are slightly more efficient and accurate, than the SVM and WASVM model which are based only on the antecedent discharge data. The study captures the current trend in the flood forecasting studies and showed the importance of both the approaches (physical and data-based modeling). The analysis of the study suggested that these approaches complement each other and can be used in accurate yet less computational intensive flood forecasting

    Imputation of Rainfall Data Using the Sine Cosine Function Fitting Neural Network

    Get PDF
    Missing rainfall data have reduced the quality of hydrological data analysis because they are the essential input for hydrological modeling. Much research has focused on rainfall data imputation. However, the compatibility of precipitation (rainfall) and non-precipitation (meteorology) as input data has received less attention. First, we propose a novel pre-processing mechanism for non-precipitation data by using principal component analysis (PCA). Before the imputation, PCA is used to extract the most relevant features from the meteorological data. The final output of the PCA is combined with the rainfall data from the nearest neighbor gauging stations and then used as the input to the neural network for missing data imputation. Second, a sine cosine algorithm is presented to optimize neural network for infilling the missing rainfall data. The proposed sine cosine function fitting neural network (SC-FITNET) was compared with the sine cosine feedforward neural network (SCFFNN), feedforward neural network (FFNN) and long short-term memory (LSTM) approaches. The results showed that the proposed SC-FITNET outperformed LSTM, SC-FFNN and FFNN imputation in terms of mean absolute error (MAE), root mean square error (RMSE) and correlation coefficient (R), with an average accuracy of 90.9%. This study revealed that as the percentage of missingness increased, the precision of the four imputation methods reduced. In addition, this study also revealed that PCA has potential in pre-processing meteorological data into an understandable format for the missing data imputation

    Dynamic neuro-fuzzy systems for rainfall-runoff modeling

    Get PDF
    Urbanization has significant impact on the hydrological processes that have caused an increase in magnitude and frequency of floods; therefore, a reliable rainfall-runoff model will be helpful to estimate discharge for any watershed management plans. Beside physically-based models, the data driven approaches have been also used frequently to model the rainfall-runoff processes. Neuro-fuzzy systems (NFS) as one of the main category of data-driven models are common in hydrological time series modeling. Among the different algorithms, Adaptive network-based fuzzy inference system (ANFIS) is well-practiced in hydrological modeling. ANFIS is an offline model and needs to be retrained periodically to be updated. Therefore, an NFS model that can employ different learning process to overcome such problem is needed. This study developed dynamic evolving neuro fuzzy inference system (DENFIS) model for event based and continuous rainfallrunoff modeling and the results were compared with the existing models to check model capabilities. DENFIS evolves through incremental learning in which the rulebase is evolved after accommodating each individual new input data and benefitted from local learning implemented through the clustering method, Evolving Clustering Method (ECM). In this study, extreme events were extracted from the historical hourly data of selected tropical catchments of Malaysia. The DENFIS model performances were compared with ANFIS, the hydrologic modeling system (HECHMS) and autoregressive model with exogenous inputs (ARX) for event based rainfall-runoff modeling. DENFIS model was also evaluated against ANFIS for continuous rainfall-runoff modeling on a daily and hourly basis, multi-step ahead runoff forecasting and simulation of the river stage. The average coefficients of efficiency (CE) obtained from DENFIS model for the events in testing phase were 0.81, 0.79 and 0.65 for Lui, Semenyih and Klang catchments respectively which were comparable with ANFIS and HEC-HMS and were better than ARX. The CEs obtained from DENFIS model for hourly continuous were 0.93, 0.92 and 0.62 and for daily continuous were 0.73, 0.67 and 0.54 for Lui, Semenyih and Klang catchments respectively which were comparable to the ones obtained from ANFIS. The performances of DENFIS and ANFIS were also comparable for multistep ahead prediction and river stage simulation. This study concluded that less training time and flexibility of the rule-base in DENFIS is an advantage compared to an offline model such as ANFIS despite the fact that the results of the two models are generally comparable. However, the learning algorithm in DENFIS was found to be potentially useful to develop adaptable runoff forecasting tools
    • …
    corecore