357 research outputs found

    Data-Driven Representation Learning in Multimodal Feature Fusion

    Get PDF
    abstract: Modern machine learning systems leverage data and features from multiple modalities to gain more predictive power. In most scenarios, the modalities are vastly different and the acquired data are heterogeneous in nature. Consequently, building highly effective fusion algorithms is at the core to achieve improved model robustness and inferencing performance. This dissertation focuses on the representation learning approaches as the fusion strategy. Specifically, the objective is to learn the shared latent representation which jointly exploit the structural information encoded in all modalities, such that a straightforward learning model can be adopted to obtain the prediction. We first consider sensor fusion, a typical multimodal fusion problem critical to building a pervasive computing platform. A systematic fusion technique is described to support both multiple sensors and descriptors for activity recognition. Targeted to learn the optimal combination of kernels, Multiple Kernel Learning (MKL) algorithms have been successfully applied to numerous fusion problems in computer vision etc. Utilizing the MKL formulation, next we describe an auto-context algorithm for learning image context via the fusion with low-level descriptors. Furthermore, a principled fusion algorithm using deep learning to optimize kernel machines is developed. By bridging deep architectures with kernel optimization, this approach leverages the benefits of both paradigms and is applied to a wide variety of fusion problems. In many real-world applications, the modalities exhibit highly specific data structures, such as time sequences and graphs, and consequently, special design of the learning architecture is needed. In order to improve the temporal modeling for multivariate sequences, we developed two architectures centered around attention models. A novel clinical time series analysis model is proposed for several critical problems in healthcare. Another model coupled with triplet ranking loss as metric learning framework is described to better solve speaker diarization. Compared to state-of-the-art recurrent networks, these attention-based multivariate analysis tools achieve improved performance while having a lower computational complexity. Finally, in order to perform community detection on multilayer graphs, a fusion algorithm is described to derive node embedding from word embedding techniques and also exploit the complementary relational information contained in each layer of the graph.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Modeling, Predicting and Capturing Human Mobility

    Get PDF
    Realistic models of human mobility are critical for modern day applications, specifically for recommendation systems, resource planning and process optimization domains. Given the rapid proliferation of mobile devices equipped with Internet connectivity and GPS functionality today, aggregating large sums of individual geolocation data is feasible. The thesis focuses on methodologies to facilitate data-driven mobility modeling by drawing parallels between the inherent nature of mobility trajectories, statistical physics and information theory. On the applied side, the thesis contributions lie in leveraging the formulated mobility models to construct prediction workflows by adopting a privacy-by-design perspective. This enables end users to derive utility from location-based services while preserving their location privacy. Finally, the thesis presents several approaches to generate large-scale synthetic mobility datasets by applying machine learning approaches to facilitate experimental reproducibility

    A step towards Advancing Digital Phenotyping In Mental Healthcare

    Get PDF
    Smartphones and wrist-wearable devices have infiltrated our lives in recent years. According to published statistics, nearly 84% of the world’s population owns a smartphone, and almost 10% own a wearable device today (2022). These devices continuously generate various data sources from multiple sensors and apps, creating our digital phenotypes. This opens new research opportunities, particularly in mental health care, which has previously relied almost exclusively on self-reports of mental health symptoms. Unobtrusive monitoring using patients’ devices may result in clinically valuable markers that can improve diagnostic processes, tailor treatment choices, provide continuous insights into their condition for actionable outcomes, such as early signs of relapse, and develop new intervention models. However, these data sources must be translated into meaningful, actionable features related to mental health to achieve their full potential. In the mental health field, there is a great need and much to be gained from defining a way to continuously assess the evolution of patients’ mental states, ideally in their everyday environment, to support the monitoring and treatments by health care providers. A smartphone-based approach may be valuable in gathering long-term objective data, aside from the usually used self-ratings, to predict clinical state changes and investigate causal inferences about state changes in patients (e.g., those with affective disorders). Being objective does not imply that passive data collection is also perfect. It has several challenges: some sensors generate vast volumes of data, and others cause significant battery drain. Furthermore, the analysis of raw passive data is complicated, and collecting certain types of data may interfere with the phenotype of interest. Nonetheless, machine learning is predisposed to address these matters and advance psychiatry’s era of personalised medicine. This work aimed to advance the research efforts on mobile and wearable sensors for mental health monitoring. We applied supervised and unsupervised machine learning methods to model and understand mental disease evolution based on the digital phenotype of patients and clinician assessments at the follow-up visits, which provide ground truths. We needed to cope with regularly and irregularly sampled, high-dimensional, and heterogeneous time series data susceptible to distortion and missingness. Hence, the developed methods must be robust to these limitations and handle missing data properly. Throughout the various projects presented here, we used probabilistic latent variable models for data imputation and feature extraction, namely, mixture models (MM) and hidden Markov models (HMM). These unsupervised models can learn even in the presence of missing data by marginalising the missing values in the function of the present observations. Once the generative models are trained on the data set with missing values, they can be used to generate samples for imputation. First, the most probable component/state has to be found for each sample. Then, sampling from the most probable distribution yields valid and robust parameter estimates and explicit imputed values for variables that can be analysed as outcomes or predictors. The imputation process can be repeated several times, creating multiple datasets, thereby accounting for the uncertainty in the imputed values and implicitly augmenting the data. Moreover, they are robust to moderate deviations of the observed data from the assumed underlying distribution and provide accurate estimates even when missingness is high. Depending on the properties of the data at hand, we employed feature extraction methods combined with classical machine learning algorithms or deep learning-based techniques for temporal modelling to predict various mental health outcomes - emotional state, World Health Organisation Disability Assessment Schedule (WHODAS 2.0) functionality scores and Generalised Anxiety Disorder-7 (GAD-7) scores, of psychiatric outpatients. We mainly focused on one-size-fits-all models, as the labelled sample size per patient was limited; however, in the mood prediction case, it was possible to apply personalised models. Integrating machines and algorithms into the clinical workflow require interpretability to increase acceptance. Therefore, we also analysed feature importance by computing Shapley additive explanations (SHAP) values. SHAP values provide an overview of essential features in the machine learning models by designating the weight of predictability of each feature positively or negatively to the target variable. The provided solutions, as such, are proof of concept, which require further clinical validation to be deployable in the clinical workflow. Still, the results are promising and lay some foundations for future research and collaboration among clinicians, patients, and computer scientists. They set the paths to advance future research prospects in technology-based mental healthcare.En los últimos años, los smartphones y los dispositivos y pulseras inteligentes, comúnmente conocidos como wearables, se han infiltrado en nuestras vidas. Según las estadísticas publicadas a día de hoy (2022), cerca del 84% de la población tiene un smartphone y aproximadamente un 10% también posee un wearable. Estos dispositivos generan datos de forma continua en base a distintos sensores y aplicaciones, creando así nuestro fenotipo digital. Estos datos abren nuevas vías de investigación, particularmente en el área de salud mental, dónde las fuentes de datos han sido casi exclusivamente autoevaluaciones de síntomas de salud mental. Monitorizar de forma no intrusiva a los pacientes mediante sus dispositivos puede dar lugar a marcadores valiosos en aplicación clínica. Esto permite mejorar los procesos de diagnóstico, adaptar tratamientos, e incluso proporcionar información continua sobre el estado de los pacientes, como signos tempranos de recaída, y hasta desarrollar nuevos modelos de intervención. Aun así, estos datos en crudo han de ser traducidos a datos interpretables relacionados con la salud mental para conseguir un máximo rendimiento de los mismos. En salud mental existe una gran necesidad, y además hay mucho que ganar, de definir cómo evaluar de forma continuada la evolución del estado mental de los pacientes en su entorno cotidiano para ayudar en el tratamiento y seguimiento de los mismos por parte de los profesionales sanitarios. En este ámbito, un enfoque basado en datos recopilados desde sus smartphones puede ser valioso para recoger datos objetivos a largo plazo al mismo tiempo que se acompaña de las autoevaluaciones utilizadas habitualmente. La combinación de ambos tipos de datos puede ayudar a predecir los cambios en el estado clínico de estos pacientes e investigar las relaciones causales sobre estos cambios (por ejemplo, en aquellos que padecen trastornos afectivos). Aunque la recogida de datos de forma pasiva tiene la ventaja de ser objetiva, también implica varios retos. Por un lado, ciertos sensores generan grandes volúmenes de datos, provocando un importante consumo de batería. Además, el análisis de los datos pasivos en crudo es complicado, y la recogida de ciertos tipos de datos puede interferir con el fenotipo que se quiera analizar. No obstante, el machine learning o aprendizaje automático, está predispuesto a resolver estas cuestiones y aportar avances en la medicina personalizada aplicada a psiquiatría. Esta tesis tiene como objetivo avanzar en la investigación de los datos recogidos por sensores de smartphones y wearables para la monitorización en salud mental. Para ello, aplicamos métodos de aprendizaje automático supervisado y no supervisado para modelar y comprender la evolución de las enfermedades mentales basándonos en el fenotipo digital de los pacientes. Estos resultados se comparan con las evaluaciones de los médicos en las visitas de seguimiento, que proporcionan las etiquetas reales. Para aplicar estos métodos hemos lidiado con datos provenientes de series temporales con alta dimensionalidad, muestreados de forma regular e irregular, heterogéneos y, además, susceptibles a presentar patrones de datos perdidos y/o distorsionados. Por lo tanto, los métodos desarrollados deben ser resistentes a estas limitaciones y manejar adecuadamente los datos perdidos. A lo largo de los distintos proyectos presentados en este trabajo, hemos utilizado modelos probabilísticos de variables latentes para la imputación de datos y la extracción de características, como por ejemplo, Mixture Models (MM) y hidden Markov Models (HMM). Estos modelos no supervisados pueden aprender incluso en presencia de datos perdidos, marginalizando estos valores en función de las datos que sí han sido observados. Una vez entrenados los modelos generativos en el conjunto de datos con valores perdidos, pueden utilizarse para imputar dichos valores generando muestras. En primer lugar, hay que encontrar el componente/estado más probable para cada muestra. Luego, se muestrea de la distirbución más probable resultando en estimaciones de parámetros robustos y válidos. Además, genera imputaciones explícitas que pueden ser tratadas como resultados. Este proceso de imputación puede repetirse varias veces, creando múltiples conjuntos de datos, con lo que se tiene en cuenta la incertidumbre de los valores imputados y aumentándose así, implícitamente, los datos. Además, estas imputaciones son resistentes a desviaciones que puedan existir en los datos observados con respecto a la distribución subyacente asumida y proporcionan estimaciones precisas incluso cuando la falta de datos es elevada. Dependiendo de las propiedades de los datos en cuestión, hemos usado métodos de extracción de características combinados con algoritmos clásicos de aprendizaje automático o técnicas basadas en deep learning o aprendizaje profundo para el modelado temporal. La finalidad de ambas opciones es ser capaces de predecir varios resultados de salud mental/estado emocional, como la puntuación sobre el World Health Organisation Disability Assessment Schedule (WHODAS 2.0), o las puntuaciones del generalised anxiety disorder-7 (GAD-7) de pacientes psiquiátricos ambulatorios. Nos centramos principalmente en modelos generalizados, es decir, no personalizados para cada paciente sino explicativos para la mayoría, ya que el tamaño de muestras etiquetada por paciente es limitado; sin embargo, en el caso de la predicción del estado de ánimo, puidmos aplicar modelos personalizados. Para que la integración de las máquinas y algoritmos dentro del flujo de trabajo clínico sea aceptada, se requiere que los resultados sean interpretables. Por lo tanto, en este trabajo también analizamos la importancia de las características sacadas por cada algoritmo en base a los valores de las explicaciones aditivas de Shapley (SHAP). Estos valores proporcionan una visión general de las características esenciales en los modelos de aprendizaje automático designando el peso, positivo o negativo, de cada característica en su predictibilidad sobre la variable objetivo. Las soluciones aportadas en esta tesis, como tales, son pruebas de concepto, que requieren una mayor validación clínica para poder ser desplegadas en el flujo de trabajo clínico. Aun así, los resultados son prometedores y sientan base para futuras investigaciones y colaboraciones entre clínicos, pacientes y científicos de datos. Éstas establecen las guías para avanzar en las perspectivas de investigación futuras en la atención sanitaria mental basada en la tecnología.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: David Ramírez García.- Secretario: Alfredo Nazábal Rentería.- Vocal: María Luisa Barrigón Estéve
    corecore