2,932 research outputs found

    On the state complexity of semi-quantum finite automata

    Full text link
    Some of the most interesting and important results concerning quantum finite automata are those showing that they can recognize certain languages with (much) less resources than corresponding classical finite automata \cite{Amb98,Amb09,AmYa11,Ber05,Fre09,Mer00,Mer01,Mer02,Yak10,ZhgQiu112,Zhg12}. This paper shows three results of such a type that are stronger in some sense than other ones because (a) they deal with models of quantum automata with very little quantumness (so-called semi-quantum one- and two-way automata with one qubit memory only); (b) differences, even comparing with probabilistic classical automata, are bigger than expected; (c) a trade-off between the number of classical and quantum basis states needed is demonstrated in one case and (d) languages (or the promise problem) used to show main results are very simple and often explored ones in automata theory or in communication complexity, with seemingly little structure that could be utilized.Comment: 19 pages. We improve (make stronger) the results in section

    Succinctness of two-way probabilistic and quantum finite automata

    Full text link
    We prove that two-way probabilistic and quantum finite automata (2PFA's and 2QFA's) can be considerably more concise than both their one-way versions (1PFA's and 1QFA's), and two-way nondeterministic finite automata (2NFA's). For this purpose, we demonstrate several infinite families of regular languages which can be recognized with some fixed probability greater than 1/2 {1/2} by just tuning the transition amplitudes of a 2QFA (and, in one case, a 2PFA) with a constant number of states, whereas the sizes of the corresponding 1PFA's, 1QFA's and 2NFA's grow without bound. We also show that 2QFA's with mixed states can support highly efficient probability amplification. The weakest known model of computation where quantum computers recognize more languages with bounded error than their classical counterparts is introduced.Comment: A new version, 21 pages, late

    Two-tape finite automata with quantum and classical states

    Full text link
    {\it Two-way finite automata with quantum and classical states} (2QCFA) were introduced by Ambainis and Watrous, and {\it two-way two-tape deterministic finite automata} (2TFA) were introduced by Rabin and Scott. In this paper we study 2TFA and propose a new computing model called {\it two-way two-tape finite automata with quantum and classical states} (2TQCFA). First, we give efficient 2TFA algorithms for recognizing languages which can be recognized by 2QCFA. Second, we give efficient 2TQCFA algorithms to recognize several languages whose status vis-a-vis 2QCFA have been posed as open questions, such as Lsquare={anbn2∣n∈N}L_{square}=\{a^{n}b^{n^{2}}\mid n\in \mathbf{N}\}. Third, we show that {anbnk∣n∈N}\{a^{n}b^{n^{k}}\mid n\in \mathbf{N}\} can be recognized by {\it (k+1)(k+1)-tape deterministic finite automata} ((k+1)(k+1)TFA). Finally, we introduce {\it kk-tape automata with quantum and classical states} (kkTQCFA) and prove that {anbnk∣n∈N}\{a^{n}b^{n^{k}}\mid n\in \mathbf{N}\} can be recognized by kkTQCFA.Comment: 25 page
    • …
    corecore