168 research outputs found

    Boosting data-driven evolutionary algorithm with localized data generation

    Get PDF
    By efficiently building and exploiting surrogates, data-driven evolutionary algorithms (DDEAs) can be very helpful in solving expensive and computationally intensive problems. However, they still often suffer from two difficulties. First, many existing methods for building a single ad hoc surrogate are suitable for some special problems but may not work well on some other problems. Second, the optimization accuracy of DDEAs deteriorates if available data are not enough for building accurate surrogates, which is common in expensive optimization problems. To this end, this article proposes a novel DDEA with two efficient components. First, a boosting strategy (BS) is proposed for self-aware model managements, which can iteratively build and combine surrogates to obtain suitable surrogate models for different problems. Second, a localized data generation (LDG) method is proposed to generate synthetic data to alleviate data shortage and increase data quantity, which is achieved by approximating fitness through data positions. By integrating the BS and the LDG, the BDDEA-LDG algorithm is able to improve model accuracy and data quantity at the same time automatically according to the problems at hand. Besides, a tradeoff is empirically considered to strike a better balance between the effectiveness of surrogates and the time cost for building them. The experimental results show that the proposed BDDEA-LDG algorithm can generally outperform both traditional methods without surrogates and other state-of-the-art DDEA son widely used benchmarks and an arterial traffic signal timing real-world optimization problem. Furthermore, the proposed BDDEA-LDG algorithm can use only about 2% computational budgets of traditional methods for producing competitive results

    A Random Forest Assisted Evolutionary Algorithm for Data-Driven Constrained Multi-Objective Combinatorial Optimization of Trauma Systems for publication

    Get PDF
    Many real-world optimization problems can be solved by using the data-driven approach only, simply because no analytic objective functions are available for evaluating candidate solutions. In this work, we address a class of expensive datadriven constrained multi-objective combinatorial optimization problems, where the objectives and constraints can be calculated only on the basis of large amount of data. To solve this class of problems, we propose to use random forests and radial basis function networks as surrogates to approximate both objective and constraint functions. In addition, logistic regression models are introduced to rectify the surrogate-assisted fitness evaluations and a stochastic ranking selection is adopted to further reduce the influences of the approximated constraint functions. Three variants of the proposed algorithm are empirically evaluated on multi-objective knapsack benchmark problems and two realworld trauma system design problems. Experimental results demonstrate that the variant using random forest models as the surrogates are effective and efficient in solving data-driven constrained multi-objective combinatorial optimization problems

    An Ensemble Surrogate-Based Framework for Expensive Multiobjective Evolutionary Optimization

    Get PDF
    Surrogate-assisted evolutionary algorithms (SAEAs) have become very popular for tackling computationally expensive multiobjective optimization problems (EMOPs), as the surrogate models in SAEAs can approximate EMOPs well, thereby reducing the time cost of the optimization process. However, with the increased number of decision variables in EMOPs, the prediction accuracy of surrogate models will deteriorate, which inevitably worsens the performance of SAEAs. To deal with this issue, this article suggests an ensemble surrogate-based framework for tackling EMOPs. In this framework, a global surrogate model is trained under the entire search space to explore the global area, while a number of surrogate submodels are trained under different search subspaces to exploit the subarea, so as to enhance the prediction accuracy and reliability. Moreover, a new infill sampling criterion is designed based on a set of reference vectors to select promising samples for training the models. To validate the generality and effectiveness of our framework, three state-of-the-art evolutionary algorithms [nondominated sorting genetic algorithm III (NSGA-III), multiobjective evolutionary algorithm based on decomposition with differential evolution (MOEA/D-DE) and reference vector-guided evolutionary algorithm (RVEA)] are embedded, which significantly improve their performance for solving most of the test EMOPs adopted in this article. When compared to some competitive SAEAs for solving EMOPs with up to 30 decision variables, the experimental results also validate the advantages of our approach in most cases

    Data-Driven Evolutionary Algorithm With Perturbation-Based Ensemble Surrogates

    Get PDF

    Nonterrestrial utilization of materials: Automated space manufacturing facility

    Get PDF
    Four areas related to the nonterrestrial use of materials are included: (1) material resources needed for feedstock in an orbital manufacturing facility, (2) required initial components of a nonterrestrial manufacturing facility, (3) growth and productive capability of such a facility, and (4) automation and robotics requirements of the facility

    Numerical modelling of additive manufacturing process for stainless steel tension testing samples

    Get PDF
    Nowadays additive manufacturing (AM) technologies including 3D printing grow rapidly and they are expected to replace conventional subtractive manufacturing technologies to some extents. During a selective laser melting (SLM) process as one of popular AM technologies for metals, large amount of heats is required to melt metal powders, and this leads to distortions and/or shrinkages of additively manufactured parts. It is useful to predict the 3D printed parts to control unwanted distortions and shrinkages before their 3D printing. This study develops a two-phase numerical modelling and simulation process of AM process for 17-4PH stainless steel and it considers the importance of post-processing and the need for calibration to achieve a high-quality printing at the end. By using this proposed AM modelling and simulation process, optimal process parameters, material properties, and topology can be obtained to ensure a part 3D printed successfully

    Enhancing Future Skills and Entrepreneurship

    Get PDF
    This open access book presents the proceedings of the 3rd Indo-German Conference on Sustainability in Engineering held at Birla Institute of Technology and Science, Pilani, India, on September 16–17, 2019. Intended to foster the synergies between research and education, the conference is one of the joint activities of the BITS Pilani and TU Braunschweig conducted under the auspices of Indo-German Center for Sustainable Manufacturing, established in 2009. The book is divided into three sections: engineering, education and entrepreneurship, covering a range of topics, such as renewable energy forecasting, design & simulation, Industry 4.0, and soft & intelligent sensors for energy efficiency. It also includes case studies on lean and green manufacturing, and life cycle analysis of ceramic products, as well as papers on teaching/learning methods based on the use of learning factories to improve students’problem-solving and personal skills. Moreover, the book discusses high-tech ideas to help the large number of unemployed engineering graduates looking for jobs become tech entrepreneurs. Given its broad scope, it will appeal to academics and industry professionals alike

    Process Modeling in Pyrometallurgical Engineering

    Get PDF
    The Special Issue presents almost 40 papers on recent research in modeling of pyrometallurgical systems, including physical models, first-principles models, detailed CFD and DEM models as well as statistical models or models based on machine learning. The models cover the whole production chain from raw materials processing through the reduction and conversion unit processes to ladle treatment, casting, and rolling. The papers illustrate how models can be used for shedding light on complex and inaccessible processes characterized by high temperatures and hostile environment, in order to improve process performance, product quality, or yield and to reduce the requirements of virgin raw materials and to suppress harmful emissions

    Small Business Innovation Research. Program solicitation. Closing date: July 21, 1992

    Get PDF
    The National Aeronautics and Space Administration (NASA) invites small businesses to submit Phase 1 proposals in response to its Small Business Innovation Research (SBIR) Program Solicitation 92-1. Firms with research or research and development capabilities (R/R&D) in science or engineering in any of the areas listed are encouraged to participate. This, the tenth annual SBIR solicitation by NASA, describes the program, identifies eligibility requirements, describes the proposal evaluation and award selection process, and provides other information to assist those interested in participating in NASA's SBIR program. It also identifies, in Section 8.0, the technical topics and subtopics in which SBIR Phase 1 proposals are solicited in 1992. These topics and subtopics cover a broad range of current NASA interests but do not necessarily include all areas in which NASA plans or currently conducts research. The NASA SBIR program seeks innovative approaches that respond to the needs, technical requirements, and new opportunities described in the subtopics. The focus is on innovation through the use of emerging technologies, novel applications of existing technologies, exploitation of scientific breakthroughs, or new capabilities or major improvements to existing technologies. NASA plans to select about 320 high-quality research or research and development proposals for Phase 1 contract awards on the basis of this Solicitation. Phase 1 contracts are normally six months in duration and funded up to $50,000, including profit. Selections will be based on the competitive merits of the offers and on NASA needs and priorities
    • …
    corecore