161 research outputs found

    Separator-based graph embedding into multidimensional grids with small edge-congestion

    Get PDF
    We study the problem of embedding a guest graph with minimum edge-congestion into a multidimensional grid with the same size as that of the guest graph. Based on a well-known notion of graph separators, we show that an embedding with a smaller edge-congestion can be obtained if the guest graph has a smaller separator, and if the host grid has a higher but constant dimension. Specifically, we prove that any graph with NN nodes, maximum node degree ΔΔ, and with a node-separator of size ss, where ss is a function such that s(n)=O(nα)s(n)=O(nα) with 0≤α1/(1−α)d>1/(1−α), O(ΔlogN)O(ΔlogN) if d=1/(1−α)d=1/(1−α), and View the MathML sourceO(ΔNα−1+1d) if d1/(1−α)d>1/(1−α), and matches an existential lower bound within a constant factor if d≤1/(1−α)d≤1/(1−α). Our result implies that if the guest graph has an excluded minor of a fixed size, such as a planar graph, then we can obtain an edge-congestion of O(ΔlogN)O(ΔlogN) for d=2d=2 and O(Δ)O(Δ) for any fixed d≥3d≥3. Moreover, if the guest graph has a fixed treewidth, such as a tree, an outerplanar graph, and a series–parallel graph, then we can obtain an edge-congestion of O(Δ)O(Δ) for any fixed d≥2d≥2. To design our embedding algorithm, we introduce edge-separators bounding extension , such that in partitioning a graph into isolated nodes using edge-separators recursively, the number of outgoing edges from a subgraph to be partitioned in a recursive step is bounded. We present an algorithm to construct an edge-separator with extension of O(Δnα)O(Δnα) from a node-separator of size O(nα)O(nα)

    Improved guarantees for Vertex Sparsification in planar graphs

    Get PDF
    Graph Sparsification aims at compressing large graphs into smaller ones while (approximately) preserving important characteristics of the input graph. In this work we study Vertex Sparsifiers, i.e., sparsifiers whose goal is to reduce the number of vertices. Given a weighted graph G=(V,E), and a terminal set K with |K|=k, a quality-q vertex cut sparsifier of G is a graph H with K contained in V_H that preserves the value of minimum cuts separating any bipartition of K, up to a factor of q. We show that planar graphs with all the k terminals lying on the same face admit quality-1 vertex cut sparsifier of size O(k^2) that are also planar. Our result extends to vertex flow and distance sparsifiers. It improves the previous best known bound of O(k^2 2^(2k)) for cut and flow sparsifiers by an exponential factor, and matches an Omega(k^2) lower-bound for this class of graphs. We also study vertex reachability sparsifiers for directed graphs. Given a digraph G=(V,E) and a terminal set K, a vertex reachability sparsifier of G is a digraph H=(V_H,E_H), K contained in V_H that preserves all reachability information among terminal pairs. We introduce the notion of reachability-preserving minors, i.e., we require H to be a minor of G. Among others, for general planar digraphs, we construct reachability-preserving minors of size O(k^2 log^2 k). We complement our upper-bound by showing that there exists an infinite family of acyclic planar digraphs such that any reachability-preserving minor must have Omega(k^2) vertices

    Topology-aware Graph Neural Networks for Learning Feasible and Adaptive ac-OPF Solutions

    Full text link
    Solving the optimal power flow (OPF) problem is a fundamental task to ensure the system efficiency and reliability in real-time electricity grid operations. We develop a new topology-informed graph neural network (GNN) approach for predicting the optimal solutions of real-time ac-OPF problem. To incorporate grid topology to the NN model, the proposed GNN-for-OPF framework innovatively exploits the locality property of locational marginal prices and voltage magnitude. Furthermore, we develop a physics-aware (ac-)flow feasibility regularization approach for general OPF learning. The advantages of our proposed designs include reduced model complexity, improved generalizability and feasibility guarantees. By providing the analytical understanding on the graph subspace stability under grid topology contingency, we show the proposed GNN can quickly adapt to varying grid topology by an efficient re-training strategy. Numerical tests on various test systems of different sizes have validated the prediction accuracy, improved flow feasibility, and topology adaptivity capability of our proposed GNN-based learning framework

    On the Combination of Game-Theoretic Learning and Multi Model Adaptive Filters

    Get PDF
    This paper casts coordination of a team of robots within the framework of game theoretic learning algorithms. In particular a novel variant of fictitious play is proposed, by considering multi-model adaptive filters as a method to estimate other players’ strategies. The proposed algorithm can be used as a coordination mechanism between players when they should take decisions under uncertainty. Each player chooses an action after taking into account the actions of the other players and also the uncertainty. Uncertainty can occur either in terms of noisy observations or various types of other players. In addition, in contrast to other game-theoretic and heuristic algorithms for distributed optimisation, it is not necessary to find the optimal parameters a priori. Various parameter values can be used initially as inputs to different models. Therefore, the resulting decisions will be aggregate results of all the parameter values. Simulations are used to test the performance of the proposed methodology against other game-theoretic learning algorithms.</p

    Visual encoding quality and scalability in information visualization

    Get PDF
    Information visualization seeks to amplify cognition through interactive visual representations of data. It comprises human processes, such as perception and cognition, and computer processes, such as visual encoding. Visual encoding consists in mapping data variables to visual variables, and its quality is critical to the effectiveness of information visualizations. The scalability of a visual encoding is the extent to which its quality is preserved as the parameters of the data grow. Scalable encodings offer good support for basic analytical tasks at scale by carrying design decisions that consider the limits of human perception and cognition. In this thesis, I present three case studies that explore different aspects of visual encoding quality and scalability: information loss, perceptual scalability, and discriminability. In the first study, I leverage information theory to model encoding quality in terms of information content and complexity. I examine how information loss and clutter affect the scalability of hierarchical visualizations and contribute an information-theoretic algorithm for adjusting these factors in visualizations of large datasets. The second study centers on the question of whether a data property (outlierness) can be lost in the visual encoding process due to saliency interference with other visual variables. I designed a controlled experiment to measure the effectiveness of motion outlier detection in complex multivariate scatterplots. The results suggest a saliency deficit effect whereby global saliency undermines support to tasks that rely on local saliency. Finally, I investigate how discriminability, a classic visualization criterion, can explain recent empirical results on encoding effectiveness and provide the foundation for automated evaluation of visual encodings. I propose an approach for discriminability evaluation based on a perceptually motivated image similarity measure
    • …
    corecore