683 research outputs found

    D2D Enhanced Heterogeneous Cellular Networks with Dynamic TDD

    Full text link
    Over the last decade, the growing amount of UL and DL mobile data traffic has been characterized by substantial asymmetry and time variations. Dynamic time-division duplex (TDD) has the capability to accommodate to the traffic asymmetry by adapting the UL/DL configuration to the current traffic demands. In this work, we study a two-tier heterogeneous cellular network (HCN) where the macro tier and small cell tier operate according to a dynamic TDD scheme on orthogonal frequency bands. To offload the network infrastructure, mobile users in proximity can engage in D2D communications, whose activity is determined by a carrier sensing multiple access (CSMA) scheme to protect the ongoing infrastructure-based and D2D transmissions. We present an analytical framework to evaluate the network performance in terms of load-aware coverage probability and network throughput. The proposed framework allows to quantify the effect on the coverage probability of the most important TDD system parameters, such as the UL/DL configuration, the base station density, and the bias factor. In addition, we evaluate how the bandwidth partition and the D2D network access scheme affect the total network throughput. Through the study of the tradeoff between coverage probability and D2D user activity, we provide guidelines for the optimal design of D2D network access.Comment: 15 pages; 9 figures; submitted to IEEE Transactions on Wireless Communication

    Dynamic Uplink-Downlink Optimization in TDD-based Small Cell Networks

    Full text link
    Dynamic Time-division duplex (TDD) can provide efficient and flexible splitting of the common wireless cellular resources between uplink (UL) and downlink (DL) users. In this paper, the UL/DL optimization problem is formulated as a noncooperative game among the small cell base stations (SCBSs) in which each base station aims at minimizing its total UL and DL flow delays. To solve this game, a self-organizing UL/DL resource configuration scheme for TDD-based small cell networks is proposed. Using the proposed scheme, an SCBS is able to estimate and learn the UL and DL loads autonomously while optimizing its UL/DL configuration accordingly. Simulations results show that the proposed algorithm achieves significant gains in terms of packet throughput in case of asymmetric UL and DL traffic loads. This gain increases as the traffic asymmetry increases, reaching up to 97% and 200% gains relative to random and fixed duplexing schemes respectively. Our results also show that the proposed algorithm is well- adapted to dynamic traffic conditions and different network sizes, and operates efficiently in case of severe cross-link interference in which neighboring cells transmit in opposite directions.Comment: In the IEEE 11th International Symposium on Wireless Communication Systems (ISWCS) 201

    Harvest the potential of massive MIMO with multi-layer techniques

    Full text link
    Massive MIMO is envisioned as a promising technology for 5G wireless networks due to its high potential to improve both spectral and energy efficiency. Although the massive MIMO system is based on innovations in the physical layer, the upper layer techniques also play important roles in harvesting the performance gains of massive MIMO. In this article, we begin with an analysis of the benefits and challenges of massive MIMO systems. We then investigate the multi-layer techniques for incorporating massive MIMO in several important network deployment scenarios. We conclude this article with a discussion of open and potential problems for future research.Comment: IEEE Networ

    On the Fundamental Characteristics of Ultra-Dense Small Cell Networks

    Full text link
    In order to cope with the forecasted 1000x increase in wireless capacity demands by 2030, network operators will aggressively densify their network infrastructure to reuse the spectrum as much as possible. However, it is important to realise that these new ultra-dense small cell networks are fundamentally different from the traditional macrocell or sparse small cell networks, and thus ultra-dense networks (UDNs) cannot be deployed and operated in the same way as in the last 25 years. In this paper, we systematically investigate and visualise the performance impacts of several fundamental characteristics of UDNs, that mobile operators and vendors should consider when deploying UDNs. Moreover, we also provide new deployment and management guidelines to address the main challenges brought by UDNs in the future.Comment: To appear in IEEE Network Magazine. 1536-1276 copyright 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. Please find the final version in IEEE from the link: http://ieeexplore.ieee.org/document/xxxxxxx/. Digital Object Identifier: 10.1109/TNM.2017.xxxxxx

    Towards 1 Gbps/UE in Cellular Systems: Understanding Ultra-Dense Small Cell Deployments

    Full text link
    Todays heterogeneous networks comprised of mostly macrocells and indoor small cells will not be able to meet the upcoming traffic demands. Indeed, it is forecasted that at least a 100x network capacity increase will be required to meet the traffic demands in 2020. As a result, vendors and operators are now looking at using every tool at hand to improve network capacity. In this epic campaign, three paradigms are noteworthy, i.e., network densification, the use of higher frequency bands and spectral efficiency enhancement techniques. This paper aims at bringing further common understanding and analysing the potential gains and limitations of these three paradigms, together with the impact of idle mode capabilities at the small cells as well as the user equipment density and distribution in outdoor scenarios. Special attention is paid to network densification and its implications when transitioning to ultra-dense small cell deployments. Simulation results show that network densification with an average inter site distance of 35 m can increase the cell- edge UE throughput by up to 48x, while the use of the 10GHz band with a 500MHz bandwidth can increase the network capacity up to 5x. The use of beamforming with up to 4 antennas per small cell base station lacks behind with cell-edge throughput gains of up to 1.49x. Our study also shows how network densifications reduces multi-user diversity, and thus proportional fair alike schedulers start losing their advantages with respect to round robin ones. The energy efficiency of these ultra-dense small cell deployments is also analysed, indicating the need for energy harvesting approaches to make these deployments energy- efficient. Finally, the top ten challenges to be addressed to bring ultra-dense small cell deployments to reality are also discussed

    Over-the-Air Time Synchronization for URLLC: Requirements, Challenges and Possible Enablers

    Full text link
    Ultra-reliable and low-latency communications (URLLC) is an emerging feature in 5G and beyond wireless systems, which is introduced to support stringent latency and reliability requirements of mission-critical industrial applications. In many potential applications, multiple sensors/actuators collaborate and require isochronous operation with strict and bounded jitter, e.g., \SI{1}{\micro\second}. To this end, network time synchronization becomes crucial for real-time and isochronous communication between a controller and the sensors/actuators. In this paper, we look at different applications in factory automation and smart grids to reveal the requirements of device-level time synchronization and the challenges in extending the high-granularity timing information to the devices. Also, we identify the potential over-the-air synchronization mechanisms in 5G radio interface, and discuss the needed enhancements to meet the jitter constraints of time-sensitive URLLC applications

    Joint Downlink Cell Association and Bandwidth Allocation for Wireless Backhauling in Two-Tier HetNets with Large-Scale Antenna Arrays

    Full text link
    The problem of joint downlink cell association (CA) and wireless backhaul bandwidth allocation (WBBA) in two-tier cellular heterogeneous networks (HetNets) is considered. Large-scale antenna array is implemented at the macro base station (BS), while the small cells within the macro cell range are single-antenna BSs and they rely on over-the-air links to the macro BS for backhauling. A sum logarithmic user rate maximization problem is investigated considering wireless backhauling constraints. A duplex and spectrum sharing scheme based on co-channel reverse time-division duplex (TDD) and dynamic soft frequency reuse (SFR) is proposed for interference management in two-tier HetNets with large-scale antenna arrays at the macro BS and wireless backhauling for small cells. Two in-band WBBA scenarios, namely, unified bandwidth allocation and per-small-cell bandwidth allocation scenarios, are investigated for joint CA-WBBA in the HetNet. A two-level hierarchical decomposition method for relaxed optimization is employed to solve the mixed-integer nonlinear program (MINLP). Solutions based on the General Algorithm Modeling System (GAMS) optimization solver and fast heuristics are also proposed for cell association in the per-small-cell WBBA scenario. It is shown that when all small cells have to use in-band wireless backhaul, the system load has more impact on both the sum log-rate and per-user rate performance than the number of small cells deployed within the macro cell range. The proposed joint CA-WBBA algorithms have an optimal load approximately equal to the size of the large-scale antenna array at the macro BS. The cell range expansion (CRE) strategy, which is an efficient cell association scheme for HetNets with perfect backhauling, is shown to be inefficient when in-band wireless backhauling for small cells comes into play.Comment: IEEE Transactions on Wireless Communications, to appea

    Energy efficient D2D communications in dynamic TDD systems

    Full text link
    Network-assisted device-to-device communication is a promising technology for improving the performance of proximity-based services. This paper demonstrates how the integration of device-to-device communications and dynamic time-division duplex can improve the energy efficiency of future cellular networks, leading to a greener system operation and a prolonged battery lifetime of mobile devices. We jointly optimize the mode selection, transmission period and power allocation to minimize the energy consumption (from both a system and a device perspective) while satisfying a certain rate requirement. The radio resource management problems are formulated as mixed-integer nonlinear programming problems. Although they are known to be NP-hard in general, we exploit the problem structure to design efficient algorithms that optimally solve several problem cases. For the remaining cases, a heuristic algorithm that computes near-optimal solutions while respecting practical constraints on execution times and signaling overhead is also proposed. Simulation results confirm that the combination of device-to-device and flexible time-division-duplex technologies can significantly enhance spectrum and energy-efficiency of next generation cellular systems.Comment: Submitted to IEEE Journal of Selected Areas in Communication

    User Selection and Power Allocation in Full Duplex Multi-Cell Networks

    Full text link
    Full duplex (FD) communications has the potential to double the capacity of a half duplex (HD) system at the link level. However, in a cellular network, FD operation is not a straightforward extension of half duplex operations. The increased interference due to a large number of simultaneous transmissions in FD operation and realtime traffic conditions limits the capacity improvement. Realizing the potential of FD requires careful coordination of resource allocation among the cells as well as within the cell. In this paper, we propose a distributed resource allocation, i.e., joint user selection and power allocation for a FD multi-cell system, assuming FD base stations (BSs) and HD user equipment (UEs). Due to the complexity of finding the globally optimum solution, a sub-optimal solution for UE selection, and a novel geometric programming based solution for power allocation, are proposed. The proposed distributed approach converges quickly and performs almost as well as a centralized solution, but with much lower signaling overhead. It provides a hybrid scheduling policy which allows FD operations whenever it is advantageous, but otherwise defaults to HD operation. We focus on small cell systems because they are more suitable for FD operation, given practical self-interference cancellation limits.With practical self-interference cancellation, it is shown that the proposed hybrid FD system achieves nearly two times throughput improvement for an indoor multi-cell scenario, and about 65% improvement for an outdoor multi-cell scenario compared to the HD system.Comment: 15 pages, to be published in IEEE Transactions on Vehicular Technology, 2016. arXiv admin note: text overlap with arXiv:1412.870

    Dynamic Joint Uplink and Downlink Optimization for Uplink and Downlink Decoupling-Enabled 5G Heterogeneous Networks

    Full text link
    The concept of user-centric and personalized service in the fifth generation (5G) mobile networks encourages technical solutions such as dynamic asymmetric uplink/downlink resource allocation and elastic association of cells to users with decoupled uplink and downlink (DeUD) access. In this paper we develop a joint uplink and downlink optimization algorithm for DeUD-enabled wireless networks for adaptive joint uplink and downlink bandwidth allocation and power control, under different link association policies. Based on a general model of inter-cell interference, we propose a three-step optimization algorithm to jointly optimize the uplink and downlink bandwidth allocation and power control, using the fixed point approach for nonlinear operators with or without monotonicity, to maximize the minimum level of quality of service satisfaction per link, subjected to a general class of resource (power and bandwidth) constraints. We present numerical results illustrating the theoretical findings for network simulator in a real-world setting, and show the advantage of our solution compared to the conventional proportional fairness resource allocation schemes in both the coupled uplink and downlink (CoUD) access and the novel link association schemes in DeUD.Comment: 17 pages, 8 figure
    • …
    corecore