69 research outputs found

    Neural Network Verification as Piecewise Linear Optimization: Formulations for the Composition of Staircase Functions

    Full text link
    We present a technique for neural network verification using mixed-integer programming (MIP) formulations. We derive a \emph{strong formulation} for each neuron in a network using piecewise linear activation functions. Additionally, as in general, these formulations may require an exponential number of inequalities, we also derive a separation procedure that runs in super-linear time in the input dimension. We first introduce and develop our technique on the class of \emph{staircase} functions, which generalizes the ReLU, binarized, and quantized activation functions. We then use results for staircase activation functions to obtain a separation method for general piecewise linear activation functions. Empirically, using our strong formulation and separation technique, we can reduce the computational time in exact verification settings based on MIP and improve the false negative rate for inexact verifiers relying on the relaxation of the MIP formulation

    Euclidean distance geometry and applications

    Full text link
    Euclidean distance geometry is the study of Euclidean geometry based on the concept of distance. This is useful in several applications where the input data consists of an incomplete set of distances, and the output is a set of points in Euclidean space that realizes the given distances. We survey some of the theory of Euclidean distance geometry and some of the most important applications: molecular conformation, localization of sensor networks and statics.Comment: 64 pages, 21 figure

    Discrete isometry groups of symmetric spaces

    Full text link
    This survey is based on a series of lectures that we gave at MSRI in Spring 2015 and on a series of papers, mostly written jointly with Joan Porti. Our goal here is to: 1. Describe a class of discrete subgroups Γ<G\Gamma<G of higher rank semisimple Lie groups, which exhibit some "rank 1 behavior". 2. Give different characterizations of the subclass of Anosov subgroups, which generalize convex-cocompact subgroups of rank 1 Lie groups, in terms of various equivalent dynamical and geometric properties (such as asymptotically embedded, RCA, Morse, URU). 3. Discuss the topological dynamics of discrete subgroups Γ\Gamma on flag manifolds associated to GG and Finsler compactifications of associated symmetric spaces X=G/KX=G/K. Find domains of proper discontinuity and use them to construct natural bordifications and compactifications of the locally symmetric spaces X/ΓX/\Gamma.Comment: 77 page
    • …
    corecore