11,026 research outputs found

    Bandwidth, expansion, treewidth, separators, and universality for bounded degree graphs

    Get PDF
    We establish relations between the bandwidth and the treewidth of bounded degree graphs G, and relate these parameters to the size of a separator of G as well as the size of an expanding subgraph of G. Our results imply that if one of these parameters is sublinear in the number of vertices of G then so are all the others. This implies for example that graphs of fixed genus have sublinear bandwidth or, more generally, a corresponding result for graphs with any fixed forbidden minor. As a consequence we establish a simple criterion for universality for such classes of graphs and show for example that for each gamma>0 every n-vertex graph with minimum degree ((3/4)+gamma)n contains a copy of every bounded-degree planar graph on n vertices if n is sufficiently large

    Labeling Schemes for Bounded Degree Graphs

    Full text link
    We investigate adjacency labeling schemes for graphs of bounded degree Δ=O(1)\Delta = O(1). In particular, we present an optimal (up to an additive constant) logn+O(1)\log n + O(1) adjacency labeling scheme for bounded degree trees. The latter scheme is derived from a labeling scheme for bounded degree outerplanar graphs. Our results complement a similar bound recently obtained for bounded depth trees [Fraigniaud and Korman, SODA 10], and may provide new insights for closing the long standing gap for adjacency in trees [Alstrup and Rauhe, FOCS 02]. We also provide improved labeling schemes for bounded degree planar graphs. Finally, we use combinatorial number systems and present an improved adjacency labeling schemes for graphs of bounded degree Δ\Delta with (e+1)n<Δn/5(e+1)\sqrt{n} < \Delta \leq n/5

    Universal targets for homomorphisms of edge-colored graphs

    Full text link
    A kk-edge-colored graph is a finite, simple graph with edges labeled by numbers 1,,k1,\ldots,k. A function from the vertex set of one kk-edge-colored graph to another is a homomorphism if the endpoints of any edge are mapped to two different vertices connected by an edge of the same color. Given a class F\mathcal{F} of graphs, a kk-edge-colored graph H\mathbb{H} (not necessarily with the underlying graph in F\mathcal{F}) is kk-universal for F\mathcal{F} when any kk-edge-colored graph with the underlying graph in F\mathcal{F} admits a homomorphism to H\mathbb{H}. We characterize graph classes that admit kk-universal graphs. For such classes, we establish asymptotically almost tight bounds on the size of the smallest universal graph. For a nonempty graph GG, the density of GG is the maximum ratio of the number of edges to the number of vertices ranging over all nonempty subgraphs of GG. For a nonempty class F\mathcal{F} of graphs, D(F)D(\mathcal{F}) denotes the density of F\mathcal{F}, that is the supremum of densities of graphs in F\mathcal{F}. The main results are the following. The class F\mathcal{F} admits kk-universal graphs for k2k\geq2 if and only if there is an absolute constant that bounds the acyclic chromatic number of any graph in F\mathcal{F}. For any such class, there exists a constant cc, such that for any k2k \geq 2, the size of the smallest kk-universal graph is between kD(F)k^{D(\mathcal{F})} and ckD(F)ck^{\lceil D(\mathcal{F})\rceil}. A connection between the acyclic coloring and the existence of universal graphs was first observed by Alon and Marshall (Journal of Algebraic Combinatorics, 8(1):5-13, 1998). One of their results is that for planar graphs, the size of the smallest kk-universal graph is between k3+3k^3+3 and 5k45k^4. Our results yield that there exists a constant cc such that for all kk, this size is bounded from above by ck3ck^3

    Near-Optimal Induced Universal Graphs for Bounded Degree Graphs

    Get PDF
    A graph UU is an induced universal graph for a family FF of graphs if every graph in FF is a vertex-induced subgraph of UU. For the family of all undirected graphs on nn vertices Alstrup, Kaplan, Thorup, and Zwick [STOC 2015] give an induced universal graph with O ⁣(2n/2)O\!\left(2^{n/2}\right) vertices, matching a lower bound by Moon [Proc. Glasgow Math. Assoc. 1965]. Let k=D/2k= \lceil D/2 \rceil. Improving asymptotically on previous results by Butler [Graphs and Combinatorics 2009] and Esperet, Arnaud and Ochem [IPL 2008], we give an induced universal graph with O ⁣(k2kk!nk)O\!\left(\frac{k2^k}{k!}n^k \right) vertices for the family of graphs with nn vertices of maximum degree DD. For constant DD, Butler gives a lower bound of Ω ⁣(nD/2)\Omega\!\left(n^{D/2}\right). For an odd constant D3D\geq 3, Esperet et al. and Alon and Capalbo [SODA 2008] give a graph with O ⁣(nk1D)O\!\left(n^{k-\frac{1}{D}}\right) vertices. Using their techniques for any (including constant) even values of DD gives asymptotically worse bounds than we present. For large DD, i.e. when D=Ω(log3n)D = \Omega\left(\log^3 n\right), the previous best upper bound was (nD/2)nO(1){n\choose\lceil D/2\rceil} n^{O(1)} due to Adjiashvili and Rotbart [ICALP 2014]. We give upper and lower bounds showing that the size is (n/2D/2)2±O~(D){\lfloor n/2\rfloor\choose\lfloor D/2 \rfloor}2^{\pm\tilde{O}\left(\sqrt{D}\right)}. Hence the optimal size is 2O~(D)2^{\tilde{O}(D)} and our construction is within a factor of 2O~(D)2^{\tilde{O}\left(\sqrt{D}\right)} from this. The previous results were larger by at least a factor of 2Ω(D)2^{\Omega(D)}. As a part of the above, proving a conjecture by Esperet et al., we construct an induced universal graph with 2n12n-1 vertices for the family of graphs with max degree 22. In addition, we give results for acyclic graphs with max degree 22 and cycle graphs. Our results imply the first labeling schemes that for any DD are at most o(n)o(n) bits from optimal

    Drawing Arrangement Graphs In Small Grids, Or How To Play Planarity

    Full text link
    We describe a linear-time algorithm that finds a planar drawing of every graph of a simple line or pseudoline arrangement within a grid of area O(n^{7/6}). No known input causes our algorithm to use area \Omega(n^{1+\epsilon}) for any \epsilon>0; finding such an input would represent significant progress on the famous k-set problem from discrete geometry. Drawing line arrangement graphs is the main task in the Planarity puzzle.Comment: 12 pages, 8 figures. To appear at 21st Int. Symp. Graph Drawing, Bordeaux, 201
    corecore