584 research outputs found

    A Backward-traversal-based Approach for Symbolic Model Checking of Uniform Strategies for Constrained Reachability

    Full text link
    Since the introduction of Alternating-time Temporal Logic (ATL), many logics have been proposed to reason about different strategic capabilities of the agents of a system. In particular, some logics have been designed to reason about the uniform memoryless strategies of such agents. These strategies are the ones the agents can effectively play by only looking at what they observe from the current state. ATL_ir can be seen as the core logic to reason about such uniform strategies. Nevertheless, its model-checking problem is difficult (it requires a polynomial number of calls to an NP oracle), and practical algorithms to solve it appeared only recently. This paper proposes a technique for model checking uniform memoryless strategies. Existing techniques build the strategies from the states of interest, such as the initial states, through a forward traversal of the system. On the other hand, the proposed approach builds the winning strategies from the target states through a backward traversal, making sure that only uniform strategies are explored. Nevertheless, building the strategies from the ground up limits its applicability to constrained reachability objectives only. This paper describes the approach in details and compares it experimentally with existing approaches implemented into a BDD-based framework. These experiments show that the technique is competitive on the cases it can handle.Comment: In Proceedings GandALF 2017, arXiv:1709.0176

    A genealogy of open access: negotiations between openness and access to research

    Get PDF
    Open access (OA) is a contested term with a complicated history and a variety of understandings. This rich history is routinely ignored by institutional, funder and governmental policies that instead enclose the concept and promote narrow approaches to OA. This article presents a genealogy of the term open access, focusing on the separate histories that emphasise openness and reusability on the one hand, as borrowed from the open-source software and free culture movements, and accessibility on the other hand, as represented by proponents of institutional and subject repositories. This genealogy is further complicated by the publishing cultures that have evolved within individual communities of practice: publishing means different things to different communities and individual approaches to OA are representative of this fact. From analysing its historical underpinnings and subsequent development, I argue that OA is best conceived as a boundary object, a term coined by Star and Griesemer (1989) to describe concepts with a shared, flexible definition between communities of practice but a more community-specific definition within them. Boundary objects permit working relationships between communities while allowing local use and development of the concept. This means that OA is less suitable as a policy object, because boundary objects lose their use-value when ‘enclosed’ at a general level, but should instead be treated as a community-led, grassroots endeavour

    Towards formal models and languages for verifiable Multi-Robot Systems

    Get PDF
    Incorrect operations of a Multi-Robot System (MRS) may not only lead to unsatisfactory results, but can also cause economic losses and threats to safety. These threats may not always be apparent, since they may arise as unforeseen consequences of the interactions between elements of the system. This call for tools and techniques that can help in providing guarantees about MRSs behaviour. We think that, whenever possible, these guarantees should be backed up by formal proofs to complement traditional approaches based on testing and simulation. We believe that tailored linguistic support to specify MRSs is a major step towards this goal. In particular, reducing the gap between typical features of an MRS and the level of abstraction of the linguistic primitives would simplify both the specification of these systems and the verification of their properties. In this work, we review different agent-oriented languages and their features; we then consider a selection of case studies of interest and implement them useing the surveyed languages. We also evaluate and compare effectiveness of the proposed solution, considering, in particular, easiness of expressing non-trivial behaviour.Comment: Changed formattin

    Approches légères pour le raisonnement sur les connaissances et les croyances

    Get PDF
    Dans cette thèse nous étudions un cadre simple dans lequel modéliser les croyances et les connaissances ainsi que leur évolution dans des systèmes multi-agents. La logique standard de représentation des connaissances est très expressive, mais au prix d'une haute complexité calculatoire. Nous proposons ici un cadre qui permet de capturer plus de situations que d'autres approches existantes tout en restant efficace. En particulier, nous considérons l'application de notre logique à la planification épistémique : étant données une situation initiale et des actions possibles, peut-on atteindre un but fixé ? Cela peut signifier savoir à qui poser des questions pour apprendre des informations, faire en sorte de ne pas être remarquée lorsque l'on lit le courrier de quelqu'un d'autre, ou empêcher quelqu'un d'entendre nos secrets. Nous considérons aussi de possibles extensions à des logiques de croyance, ainsi que les liens entre notre système et d'autres cadres proches.In this thesis we study a lightweight framework in which to model knowledge and beliefs and the evolution thereof in multiagent systems. The standard logic used for this is very expressive, but this comes at a high cost in terms of computational efficiency. We here propose a framework which captures more than other existing approaches while remaining cost-effective. In particular, we show its applicability to epistemic planning: given an initial situation and some possible actions, can we find a way to reach our desired goal? This might mean knowing who to ask in order to learn something, making sure we aren't seen when reading someone else's mail, or preventing someone from overhearing our secrets. We also discuss possible extensions to logics of belief, and the relations between our framework and other related approaches

    Prompt interval temporal logic

    Get PDF
    Interval temporal logics are expressive formalisms for temporal representation and reasoning, which use time intervals as primitive temporal entities. They have been extensively studied for the past two decades and successfully applied in AI and computer science. Unfortunately, they lack the ability of expressing promptness conditions, as it happens with the commonly-used temporal logics, e.g., LTL: whenever we deal with a liveness request, such as \u201csomething good eventually happens\u201d, there is no way to impose a bound on the delay with which it is fulfilled. In the last years, such an issue has been addressed in automata theory, game theory, and temporal logic. In this paper, we approach it in the interval temporal logic setting. First, we introduce PROMPT-PNL, a prompt extension of the well-studied interval temporal logic PNL, and we prove the undecidability of its satisfiability problem; then, we show how to recover decidability (NEXPTIME-completeness) by imposing a natural syntactic restriction on it

    Epistemic and Doxastic Planning

    Get PDF
    • …
    corecore