210 research outputs found

    On the uniform one-dimensional fragment

    Full text link
    The uniform one-dimensional fragment of first-order logic, U1, is a recently introduced formalism that extends two-variable logic in a natural way to contexts with relations of all arities. We survey properties of U1 and investigate its relationship to description logics designed to accommodate higher arity relations, with particular attention given to DLR_reg. We also define a description logic version of a variant of U1 and prove a range of new results concerning the expressivity of U1 and related logics

    On quantum vs. classical probability

    Full text link
    Quantum theory shares with classical probability theory many important properties. I show that this common core regards at least the following six areas, and I provide details on each of these: the logic of propositions, symmetry, probabilities, composition of systems, state preparation and reductionism. The essential distinction between classical and quantum theory, on the other hand, is shown to be joint decidability versus smoothness; for the latter in particular I supply ample explanation and motivation. Finally, I argue that beyond quantum theory there are no other generalisations of classical probability theory that are relevant to physics.Comment: Major revision: key results unchanged, but derivation and discussion completely rewritten; 33 pages, no figure

    Two-Variable Logic on Data Trees and XML Reasoning

    Get PDF
    International audienceMotivated by reasoning tasks in the context of XML languages, the satisfiability problem of logics on data trees is investigated. The nodes of a data tree have a label from a finite set and a data value from a possibly infinite set. It is shown that satisfiability for two-variable first-order logic is decidable if the tree structure can be accessed only through the child and the next sibling predicates and the access to data values is restricted to equality tests. From this main result decidability of satisfiability and containment for a data-aware fragment of XPath and of the implication problem for unary key and inclusion constraints is concluded

    Two-variable Logic with Counting and a Linear Order

    Get PDF
    We study the finite satisfiability problem for the two-variable fragment of first-order logic extended with counting quantifiers (C2) and interpreted over linearly ordered structures. We show that the problem is undecidable in the case of two linear orders (in the presence of two other binary symbols). In the case of one linear order it is NEXPTIME-complete, even in the presence of the successor relation. Surprisingly, the complexity of the problem explodes when we add one binary symbol more: C2 with one linear order and in the presence of other binary predicate symbols is equivalent, under elementary reductions, to the emptiness problem for multicounter automata

    Decidability Issues for Two-Variable Logics with Several Linear Orders

    Get PDF
    We show that the satisfiability and the finite satisfiability problems for two-variable logic, FO2, over the class of structures with three linear orders, are undecidable. This sharpens an earlier result that FO2 with eight linear orders is undecidable. The theorem holds for a restricted case in which linear orders are the only non-unary relations. Recently, a contrasting result has been shown, that the finite satisfiability problem for FO2 with two linear orders and with no additional non-unary relations is decidable. We observe that our proof can be adapted to some interesting fragments of FO2, in particular it works for the two-variable guarded fragment, GF2, even if the order relations are used only as guards. Finally, we show that GF2 with an arbitrary number of linear orders which can be used only as guards becomes decidable if except linear orders only unary relations are allowed
    • …
    corecore