94 research outputs found

    Investigation on Performance Metrics of Nanoscale Multigate MOSFETs towards RF and IC Applications

    Get PDF
    Silicon-on-Insulator (SOI) MOSFETs have been the primary precursor for the CMOS technology since last few decades offering superior device performance in terms of package density, speed, and reduced second order harmonics. Recent trends of investigation have stimulated the interest in Fully Depleted (FD) SOI MOSFET because of their remarkable scalability efficiency. However, some serious issues like short channel effects (SCEs) viz drain induced barrier lowering (DIBL), Vth roll-off, subthreshold slope (SS), and hot carrier effects (HCEs) are observed in nanoscale regime. Numerous advanced structures with various engineering concepts have been addressed to reduce the above mentioned SCEs in SOI platform. Among them strain engineering, high-k gate dielectric with metal gate technology (HKMG), and non-classical multigate technologies are most popular models for enhancement in carrier mobility, suppression of gate leakage current, and better immunization to SCEs. In this thesis, the performance of various emerging device designs are analyzed in nanoscale with 2-D modeling as well as through calibrated TCAD simulation. These attempts are made to reduce certain limitations of nanoscale design and to provide a significant contribution in terms of improved performances of the miniaturized devices. Various MOS parameters like gate work function (_m), channel length (L), channel thickness (tSi), and gate oxide thickness (tox) are optimized for both FD-SOI and Multiple gate technology. As the semiconductor industries migrate towards multigate technology for system-on-chip (SoC), system-in-package (SiP), and internet-of-things (IoT) applications, an appropriate examination of the advanced multiple gate MOFETs is required for the analog/RF application keeping reliability issue in mind. Various non-classical device structures like gate stack engineering and halo doping in the channel are extensively studied for analog/RF applications in double gate (DG) platform. A unique attempt has been made for detailed analysis of the state-of-the-art 3-D FinFET on dependency of process variability. The 3-D architecture is branched as Planar or Trigate or FinFET according to the aspect ratio (WFin=HFin). The evaluation of zero temperature coefficient (ZTC) or temperature inflection point (TCP) is one of the key investigation of the thesis for optimal device operation and reliability. The sensitivity of DG-MOSFET and FinFET performances have been addressed towards a wide range of temperature variations, and the ZTC points are identified for both the architectures. From the presented outcomes of this work, some ideas have also been left for the researchers for design of optimum and reliable device architectures to meet the requirements of high performance (HP) and/or low standby power (LSTP) applications

    ATLAS simulation based characterization of Recessed-S/D FD SOI MOSFETs with non-uniform lateral doping

    Get PDF
    As scaling down the technology into nanometer regime, short channel effects (SCE) and manufacturing limits will increase, which alters the performance of devices. Silicon-on-insulator (SOI) has got reputation that is a promising technology in the last decade offering more CMOS devices with higher density, higher speed, and reduced second order effects for submicron VLSI applications. Recent investigations have been reported fully depleted (FD) SOI devices are the best solutions because of their suitability to shrinking methods comparative to bulk silicon CMOS devices. Further, implicit the extra advantages, like sub threshold current reduction and improvement in Analog/RF performance; channel engineering and source/drain engineering techniques are implemented in FD SOI MOSFET. Recessed FD SOI MOSFET with non-uniform lateral doping structure gives some solutions to SCEs and better device performance by changing doping levels in different length ratios of channel region in lateral direction In this project work, a comprehensive performance study of source/drain (S/D) engineered SOI MOSFET with non-uniform doping in Channel region is presented. To analyse the characterisation of proposed structure, all the characteristics parameters extracted by using simulation tool. Those characteristics parameters are Surface potential, Threshold voltage, Sub-threshold current, Device capacitances, Drain current, Transconductance, Output conductance, Transconductance generation efficiency, Cut-off frequency and Maximum frequency of oscillation have been carried out and compared with its SOI MOSFETs and non-S/D engineered ones. To extract the characteristics parameters of Device H and Y-parameters are used. All these numerical simulation results are performed using ATLASTM, a 2-D numerical device simulator from SILVACO Inc

    Simulation study of scaling design, performance characterization, statistical variability and reliability of decananometer MOSFETs

    Get PDF
    This thesis describes a comprehensive, simulation based scaling study – including device design, performance characterization, and the impact of statistical variability – on deca-nanometer bulk MOSFETs. After careful calibration of fabrication processes and electrical characteristics for n- and p-MOSFETs with 35 nm physical gate length, 1 nm EOT and stress engineering, the simulated devices closely match the performance of contemporary 45 nm CMOS technologies. Scaling to 25 nm, 18 nm and 13 nm gate length n and p devices follows generalized scaling rules, augmented by physically realistic constraints and the introduction of high-k/metal-gate stacks. The scaled devices attain the performance stipulated by the ITRS. Device a.c. performance is analyzed, at device and circuit level. Extrinsic parasitics become critical to nano-CMOS device performance. The thesis describes device capacitance components, analyzes the CMOS inverter, and obtains new insights into the inverter propagation delay in nano-CMOS. The projection of a.c. performance of scaled devices is obtained. The statistical variability of electrical characteristics, due to intrinsic parameter fluctuation sources, in contemporary and scaled decananometer MOSFETs is systematically investigated for the first time. The statistical variability sources: random discrete dopants, gate line edge roughness and poly-silicon granularity are simulated, in combination, in an ensemble of microscopically different devices. An increasing trend in the standard deviation of the threshold voltage as a function of scaling is observed. The introduction of high-k/metal gates improves electrostatic integrity and slows this trend. Statistical evaluations of variability in Ion and Ioff as a function of scaling are also performed. For the first time, the impact of strain on statistical variability is studied. Gate line edge roughness results in areas of local channel shortening, accompanied by locally increased strain, both effects increasing the local current. Variations are observed in both the drive current, and in the drive current enhancement normally expected from the application of strain. In addition, the effects of shallow trench isolation (STI) on MOSFET performance and on its statistical variability are investigated for the first time. The inverse-narrow-width effect of STI enhances the current density adjacent to it. This leads to a local enhancement of the influence of junction shapes adjacent to the STI. There is also a statistical impact on the threshold voltage due to random STI induced traps at the silicon/oxide interface

    Strain-Engineered MOSFETs

    Get PDF
    This book brings together new developments in the area of strain-engineered MOSFETs using high-mibility substrates such as SIGe, strained-Si, germanium-on-insulator and III-V semiconductors into a single text which will cover the materials aspects, principles, and design of advanced devices, their fabrication and applications. The book presents a full TCAD methodology for strain-engineering in Si CMOS technology involving data flow from process simulation to systematic process variability simulation and generation of SPICE process compact models for manufacturing for yield optimization

    Reliability Investigations of MOSFETs using RF Small Signal Characterization

    Get PDF
    Modern technology needs and advancements have introduced various new concepts such as Internet-of-Things, electric automotive, and Artificial intelligence. This implies an increased activity in the electronics domain of analog and high frequency. Silicon devices have emerged as a cost-effective solution for such diverse applications. As these silicon devices are pushed towards higher performance, there is a continuous need to improve fabrication, power efficiency, variability, and reliability. Often, a direct trade-off of higher performance is observed in the reliability of semiconductor devices. The acceleration-based methodologies used for reliability assessment are the adequate time-saving solution for the lifetime's extrapolation but come with uncertainty in accuracy. Thus, the efforts to improve the accuracy of reliability characterization methodologies run in parallel. This study highlights two goals that can be achieved by incorporating high-frequency characterization into the reliability characteristics. The first one is assessing high-frequency performance throughout the device's lifetime to facilitate an accurate description of device/circuit functionality for high-frequency applications. Secondly, to explore the potential of high-frequency characterization as the means of scanning reliability effects within devices. S-parameters served as the high-frequency device's response and mapped onto a small-signal model to analyze different components of a fully depleted silicon-on-insulator MOSFET. The studied devices are subjected to two important DC stress patterns, i.e., Bias temperature instability stress and hot carrier stress. The hot carrier stress, which inherently suffers from the self-heating effect, resulted in the transistor's geometry-dependent magnitudes of hot carrier degradation. It is shown that the incorporation of the thermal resistance model is mandatory for the investigation of hot carrier degradation. The property of direct translation of small-signal parameter degradation to DC parameter degradation is used to develop a new S-parameter based bias temperature instability characterization methodology. The changes in gate-related small-signal capacitances after hot carrier stress reveals a distinct signature due to local change of flat-band voltage. The measured effects of gate-related small-signal capacitances post-stress are validated through transient physics-based simulations in Sentaurus TCAD.:Abstract Symbols Acronyms 1 Introduction 2 Fundamentals 2.1 MOSFETs Scaling Trends and Challenges 2.1.1 Silicon on Insulator Technology 2.1.2 FDSOI Technology 2.2 Reliability of Semiconductor Devices 2.3 RF Reliability 2.4 MOSFET Degradation Mechanisms 2.4.1 Hot Carrier Degradation 2.4.2 Bias Temperature Instability 2.5 Self-heating 3 RF Characterization of fully-depleted Silicon on Insulator devices 3.1 Scattering Parameters 3.2 S-parameters Measurement Flow 3.2.1 Calibration 3.2.2 De-embedding 3.3 Small-Signal Model 3.3.1 Model Parameters Extraction 3.3.2 Transistor Figures of Merit 3.4 Characterization Results 4 Self-heating assessment in Multi-finger Devices 4.1 Self-heating Characterization Methodology 4.1.1 Output Conductance Frequency dependence 4.1.2 Temperature dependence of Drain Current 4.2 Thermal Resistance Behavior 4.2.1 Thermal Resistance Scaling with number of fingers 4.2.2 Thermal Resistance Scaling with finger spacing 4.2.3 Thermal Resistance Scaling with GateWidth 4.2.4 Thermal Resistance Scaling with Gate length 4.3 Thermal Resistance Model 4.4 Design for Thermal Resistance Optimization 5 Bias Temperature Instability Investigation 5.1 Impact of Bias Temperature Instability stress on Device Metrics 5.1.1 Experimental Details 5.1.2 DC Parameters Drift 5.1.3 RF Small-Signal Parameters Drift 5.2 S-parameter based on-the-fly Bias Temperature Instability Characterization Method 5.2.1 Measurement Methodology 5.2.2 Results and Discussion 6 Investigation of Hot-carrier Degradation 6.1 Impact of Hot-carrier stress on Device performance 6.1.1 DC Metrics Degradation 6.1.2 Impact on small-signal Parameters 6.2 Implications of Self-heating on Hot-carrier Degradation in n-MOSFETs 6.2.1 Inclusion of Thermal resistance in Hot-carrier Degradation modeling 6.2.2 Convolution of Bias Temperature Instability component in Hot-carrier Degradation 6.2.3 Effect of Source and Drain Placement in Multi-finger Layout 6.3 Vth turn-around effect in p-MOSFET 7 Deconvolution of Hot-carrier Degradation and Bias Temperature Instability using Scattering parameters 7.1 Small-Signal Parameter Signatures for Hot-carrier Degradation and Bias Temperature Instability 7.2 TCAD Dynamic Simulation of Defects 7.2.1 Fixed Charges 7.2.2 Interface Traps near Gate 7.2.3 Interface Traps near Spacer Region 7.2.4 Combination of Traps 7.2.5 Drain Series Resistance effect 7.2.6 DVth Correction 7.3 Empirical Modeling based deconvolution of Hot-carrier Degradation 8 Conclusion and Recommendations 8.1 General Conclusions 8.2 Recommendations for Future Work A Directly measured S-parameters and extracted Y-parameters B Device Dimensions for Thermal Resistance Modeling C Frequency response of hot-carrier degradation (HCD) D Localization Effect of Interface Traps Bibliograph

    Scaling the bulk-driven MOSFET into deca-nanometer bulk CMOS technologies

    Get PDF
    The International Technology Roadmap for Semiconductors predicts that the nominal power supply voltage, VDD, will fall to 0.7 V by the end of the bulk CMOS era. At that time, it is expected that the long-channel threshold voltage of a MOSFET, VT0, will rise to 35.5% of VDD in order to maintain acceptable off-state leakage characteristics in digital systems. Given the recent push for system-on-a-chip integration, this increasing trend in VT0/VDD poses a serious threat to the future of analog design because it causes traditional analog circuit topologies to experience progressively problematic signal swing limitations in each new process generation. To combat the process-scaling-induced signal swing limitations of analog circuitry, researchers have proposed the use of bulk-driven MOSFETs. By using the bulk terminal as an input rather than the gate, the bulk-driven MOSFET makes it possible to extend the applicability of any analog cell to extremely low power supply voltages because VT0 does not appear in the device\u27s input signal path. Since the viability of the bulk-driven technique was first investigated in a 2 um p-well process, there have been numerous reports of low-voltage analog designs incorporating bulk-driven MOSFETs in the literature - most of which appear in technologies with feature sizes larger than 0.18 um. However, as of yet, no effort has been undertaken to understand how sub-micron process scaling trends have influenced the performance of a bulk-driven MOSFET, let alone make the device more adaptable to the deca-nanometer technologies widely used in the analog realm today. Thus, to further the field\u27s understanding of the bulk-driven MOSFET, this dissertation aims to examine the implications of scaling the device into a standard 90 nm bulk CMOS process. This dissertation also describes how the major disadvantages of a bulk-driven MOSFET - i.e., its reduced intrinsic gain, its limited frequency response and its large layout area requirement - can be mitigated through modifications to the device\u27s vertical doping profile and well structure. To gauge the potency of the proposed process changes, an optimized n-type bulk-driven MOSFET has been designed in a standard 90 nm bulk CMOS process via the 2-D device simulator, ATLAS

    Compact Models for Integrated Circuit Design

    Get PDF
    This modern treatise on compact models for circuit computer-aided design (CAD) presents industry standard models for bipolar-junction transistors (BJTs), metal-oxide-semiconductor (MOS) field-effect-transistors (FETs), FinFETs, and tunnel field-effect transistors (TFETs), along with statistical MOS models. Featuring exercise problems at the end of each chapter and extensive references at the end of the book, the text supplies fundamental and practical knowledge necessary for efficient integrated circuit (IC) design using nanoscale devices. It ensures even those unfamiliar with semiconductor physics gain a solid grasp of compact modeling concepts

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book

    Modeling and Simulation of Subthreshold Characteristics of Short-Channel Fully-Depleted Recessed-Source/Drain SOI MOSFETs

    Get PDF
    Non-conventional metal-oxide-semiconductor (MOS) devices have attracted researchers‟ attention for future ultra-large-scale-integration (ULSI) applications since the channel length of conventional MOS devices approached the physical limit. Among the non-conventional CMOS devices which are currently being pursued for the future ULSI, the fully-depleted (FD) SOI MOSFET is a serious contender as the SOI MOSFETs possess some unique features such as enhanced short-channel effects immunity, low substrate leakage current, and compatibility with the planar CMOS technology. However, due to the ultra-thin source and drain regions, FD SOI MOSFETs possess large series resistance which leads to the poor current drive capability of the device despite having excellent short-channel characteristics. To overcome this large series resistance problem, the source/drain area may be increased by extending S/D either upward or downward. Hence, elevated-source/drain (E-S/D) and recessed-source/drain (Re-S/D) are the two structures which can be used to minimize the series resistance problem. Due to the undesirable issues such as parasitic capacitance, current crowding effects, etc. with E-S/D structure, the Re-S/D structure is a better choice. The FD Re-S/D SOI MOSFET may be an attractive option for sub-45nm regime because of its low parasitic capacitances, reduced series resistance, high drive current, very high switching speed and compatibility with the planar CMOS technology. The present dissertation is to deal with the theoretical modeling and computer-based simulation of the FD SOI MOSFETs in general, and recessed source/drain (Re-S/D) ultra-thin-body (UTB) SOI MOSFETs in particular. The current drive capability of Re-S/D UTB SOI MOSFETs can be further improved by adopting the dual-metal-gate (DMG) structure in place of the conventional single-metal-gate-structure. However, it will be interesting to see how the presence of two metals as gate contact changes the subthreshold characteristics of the device. Hence, the effects of adopting DMG structure on the threshold voltage, subthreshold swing and leakage current of Re-S/D UTB SOI MOSFETs have been studied in this dissertation. Further, high-k dielectric materials are used in ultra-scaled MOS devices in order to cut down the quantum mechanical tunneling of carriers. However, a physically thick gate dielectric causes fringing field induced performance degradation. Therefore, the impact of high-k dielectric materials on subthreshold characteristics of Re-S/D SOI MOSFETs needs to be investigated. In this dissertation, various subthreshold characteristics of the device with high-k gate dielectric and metal gate electrode have been investigated in detail. Moreover, considering the variability problem of threshold voltage in ultra-scaled devices, the presence of a back-gate bias voltage may be useful for ultimate tuning of the threshold voltage and other characteristics. Hence, the impact of back-gate bias on the important subthreshold characteristics such as threshold voltage, subthreshold swing and leakage currents of Re-S/D UTB SOI MOSFETs has been thoroughly analyzed in this dissertation. The validity of the analytical models are verified by comparing model results with the numerical simulation results obtained from ATLAS™, a device simulator from SILVACO Inc
    corecore