3,636 research outputs found

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Natural and Technological Hazards in Urban Areas

    Get PDF
    Natural hazard events and technological accidents are separate causes of environmental impacts. Natural hazards are physical phenomena active in geological times, whereas technological hazards result from actions or facilities created by humans. In our time, combined natural and man-made hazards have been induced. Overpopulation and urban development in areas prone to natural hazards increase the impact of natural disasters worldwide. Additionally, urban areas are frequently characterized by intense industrial activity and rapid, poorly planned growth that threatens the environment and degrades the quality of life. Therefore, proper urban planning is crucial to minimize fatalities and reduce the environmental and economic impacts that accompany both natural and technological hazardous events

    A First Course in Causal Inference

    Full text link
    I developed the lecture notes based on my ``Causal Inference'' course at the University of California Berkeley over the past seven years. Since half of the students were undergraduates, my lecture notes only require basic knowledge of probability theory, statistical inference, and linear and logistic regressions

    Neural Architecture Search for Image Segmentation and Classification

    Get PDF
    Deep learning (DL) is a class of machine learning algorithms that relies on deep neural networks (DNNs) for computations. Unlike traditional machine learning algorithms, DL can learn from raw data directly and effectively. Hence, DL has been successfully applied to tackle many real-world problems. When applying DL to a given problem, the primary task is designing the optimum DNN. This task relies heavily on human expertise, is time-consuming, and requires many trial-and-error experiments. This thesis aims to automate the laborious task of designing the optimum DNN by exploring the neural architecture search (NAS) approach. Here, we propose two new NAS algorithms for two real-world problems: pedestrian lane detection for assistive navigation and hyperspectral image segmentation for biosecurity scanning. Additionally, we also introduce a new dataset-agnostic predictor of neural network performance, which can be used to speed-up NAS algorithms that require the evaluation of candidate DNNs

    Evaluating the sustainability and resiliency of local food systems

    Get PDF
    With an ever-rising global population and looming environmental challenges such as climate change and soil degradation, it is imperative to increase the sustainability of food production. The drastic rise in food insecurity during the COVID-19 pandemic has further shown a pressing need to increase the resiliency of food systems. One strategy to reduce the dependence on complex, vulnerable global supply chains is to strengthen local food systems, such as by producing more food in cities. This thesis uses an interdisciplinary, food systems approach to explore aspects of sustainability and resiliency within local food systems. Lifecycle assessment (LCA) was used to evaluate how farm scale, distance to consumer, and management practices influence environmental impacts for different local agriculture models in two case study locations: Georgia, USA and England, UK. Farms were grouped based on urbanisation level and management practices, including: urban organic, peri-urban organic, rural organic, and rural conventional. A total of 25 farms and 40 crop lifecycles were evaluated, focusing on two crops (kale and tomatoes) and including impacts from seedling production through final distribution to the point of sale. Results were extremely sensitive to the allocation of composting burdens (decomposition emissions), with impact variation between organic farms driven mainly by levels of compost use. When composting burdens were attributed to compost inputs, the rural conventional category in the U.S. and the rural organic category in the UK had the lowest average impacts per kg sellable crop produced, including the lowest global warming potential (GWP). However, when subtracting avoided burdens from the municipal waste stream from compost inputs, trends reversed entirely, with urban or peri-urban farm categories having the lowest impacts (often negative) for GWP and marine eutrophication. Overall, farm management practices were the most important factor driving environmental impacts from local food supply chains. A soil health assessment was then performed on a subset of the UK farms to provide insight to ecosystem services that are not captured within LCA frameworks. Better soil health was observed in organically-farmed and uncultivated soils compared to conventionally farmed soils, suggesting higher ecosystem service provisioning as related to improved soil structure, flood mitigation, erosion control, and carbon storage. However, relatively high heavy metal concentrations were seen on urban and peri-urban farms, as well as those located in areas with previous mining activity. This implies that there are important services and disservices on farms that are not captured by LCAs. Zooming out from a focus on food production, a qualitative methodology was used to explore experiences of food insecurity and related health and social challenges during the COVID-19 pandemic. Fourteen individuals receiving emergency food parcels from a community food project in Sheffield, UK were interviewed. Results showed that maintaining food security in times of crisis requires a diverse set of individual, household, social, and place-based resources, which were largely diminished or strained during the pandemic. Drawing upon social capital and community support was essential to cope with a multiplicity of hardship, highlighting a need to develop community food infrastructure that supports ideals of mutual aid and builds connections throughout the food supply chain. Overall, this thesis shows that a range of context-specific solutions are required to build sustainable and resilient food systems. This can be supported by increasing local control of food systems and designing strategies to meet specific community needs, whilst still acknowledging a shared global responsibility to protect ecosystem, human, and planetary health

    Undergraduate Catalog of Studies, 2022-2023

    Get PDF

    30th European Congress on Obesity (ECO 2023)

    Get PDF
    This is the abstract book of 30th European Congress on Obesity (ECO 2023

    Rational development of stabilized cyclic disulfide redox probes and bioreductive prodrugs to target dithiol oxidoreductases

    Get PDF
    Countless biological processes allow cells to develop, survive, and proliferate. Among these, tightly balanced regulatory enzymatic pathways that can respond rapidly to external impacts maintain dynamic physiological homeostasis. More specifically, redox homeostasis broadly affects cellular metabolism and proliferation, with major contributions by thiol/disulfide oxidoreductase systems, in particular, the Thioredoxin Reductase Thioredoxin (TrxR/Trx) and the Glutathione Reductase-Glutathione-Glutaredoxin (GR/GSH/Grx) systems. These cascades drive vital cellular functions in many ways through signaling, regulating other proteins' activity by redox switches, and by stoichiometric reductant transfers in metabolism and antioxidant systems. Increasing evidence argues that there is a persistent alteration of the redox environment in certain pathological states, such as cancer, that heavily involve the Trx system: upregulation and/or overactivity of the Trx system may support or drive cancer progression, making both TrxR and Trx promising targets for anti-cancer drug development. Understanding the biochemical mechanisms and connections between certain redox cascades requires research tools that interact with them. The state-of-the-art genetic tools are mostly ratiometric reporters that measure reduced:oxidized ratios of selected redox pairs or the general thiol pool. However, the precise cellular roles of the central oxidoreductase systems, including TrxR and Trx, remain inaccessible due to the lack of probes to selectively measure turnover by either of these proteins. However, such probes would allow measuring their effective reductive activity apart from expression levels in native systems, including in cells, animals, or patient samples. They are also of high interest to identify chemical inhibitors for TrxR/Trx in cells and to validate their potential use as anti-cancer agents (to date, there is no selective cellular Trx inhibitor, and most known TrxR inhibitors were not comprehensively evaluated considering selectivity and potential off-targets). However, small molecule redox imaging tools are underdeveloped: their protein specificity, spectral properties, and applicability remain poorly precedented. This work aimed to address this opportunity gap and develop novel, small molecule diagnostic and therapeutic tools to selectively target the Trx system based on a modular trigger cargo design: artificial cyclic disulfide substrates (trigger) for oxidoreductases are tethered to molecular agents (cargo) such that the cargo’s activity is masked and is re-established only through reduction by a target protein. The rational design of these novel reduction sensors to target the cell's strongest disulfide-reducing enzymes was driven by the following principles: (i) cyclic disulfide triggers with stabilized ring systems were used to gain low reduction potentials that should resist reduction except by the strongest cellular reductases, such as Trx; and (ii) the cyclic topology also offers the potential for kinetic reversibility that should select for dithiol-type redox proteins over the cellular monothiol background. Creating imaging agents based on such two-component designs to selectively measure redox protein activity in native cells required to combine the correct trigger reducibility, probe activation kinetics, and imaging modalities and to consider the overall molecular architecture. The major prior art in this field has applied cyclic 5-membered disulfides (1,2 dithiolanes) as substrates for TrxR in a similar way to create such tools. However, this motif was described elsewhere as thermodynamically instable and was due to widely used for dynamic covalent cascade reactions. By comparing a novel 1,2 dithiolane-based probe to the state-of-the-art probes, including commercial TrxR sensors, by screening a conclusive assay panel of cellular TrxR modulations, I clarified that 1,2 dithiolanes are not selective substrates for TrxR in biological settings (Nat Commun 2022). Instead, aiming for more stable ring systems and thus more robust redox probes, during this work, I developed bicyclic 6 membered disulfides (piperidine fused 1,2 dithianes) with remarkably low reduction potentials. I showed that molecular probes using them as reduction sensors can be mostly processed by thioredoxins while being stable against reduction by GSH. The thermodynamically stabilized decalin like topology of the cis-annelated 1,2 dithianes requires particularly strong reductants to be cleaved. They also select for dithiol type redox proteins, like Trx, based on kinetic reversibility and offer fast cyclization due to the preorganization by annelation (JACS 2021). This work further expanded the system’s modularity with structural cores based on piperazine-fused 1,2 dithianes with the two amines allowing independent derivatization. Diagnostic tools using them as reduction sensors proved equally robust but with highly improved activation kinetics and were thus cellularly activated. Cellular studies evolved that they are substrates for both Trxs and their protein cousins Grxs, so measuring the cellular dithiol protein pool rather than solely Trx activity (preprint 2023). Finally, a trigger based on a slightly adapted reduction sensor, a desymmetrized 1,2 thiaselenane, was designed for selective reduction by TrxR’s selenol/thiol active site, then combined with a precipitating large Stokes’ shift fluorophore and a solubilizing group, to evolve the first selective probe RX1 to measure cellular TrxR activity, which even allowed high throughput inhibitor screening (Chem 2022). The central principle of this work was further advanced to therapeutic prodrugs based on the duocarmycin cargo (CBI) with tunable potency (JACS Au 2022) that can be used to create off-to-on therapeutic prodrugs. Such CBI prodrugs employing stabilized 1,2 dichalcogenide triggers proved to be cytotoxins that depend on Trx system activity in cells. They could further be exploited for cell-line dependent reductase activity profiling by screening their redox activation indices, the reduction-dependent part of total prodrug activation, in 177 cell lines. Beyond that, these prodrugs were well-tolerated in animals and showed anti-cancer efficacy in vivo in two distinct mouse tumor models (preprint 2022). Taken together, I introduced unique monothiol-resistant reducible motifs to target the cellular Trx system with chemocompatible units for each for TrxR and Trx/Grx, where the cyclic nature of the dichalcogenides avoids activation by GSH. By using them with distinct molecular cargos, I developed novel selective fluorescent reporter probes; and introduced a new class of bioreductive therapeutic constructs based on a common modular design. These were either applied to selectively measure cellular reductase activity or to deliver cytotoxic anti cancer agents in vivo. Ongoing work aims to differentiate between the two major redox effector proteins Trx and Grx, requiring additional layers of selectivity that may be addressed by tuned molecular recognition. The flexible use of various molecular cargos allows harnessing the same cellular redox machinery by either probes or prodrugs. This allows predictive conclusions from diagnostics to be directly translated into therapy and offers great potential for future adaptation to other enzyme classes and therapeutic venues.Die zellulĂ€re Redox-Homöostase hĂ€ngt von Thiol/Disulfid-Oxidoreduktasen ab, die den Stoffwechsel, die Proliferation und die antioxidative Antwort von Zellen beeinflussen. Die wichtigsten Netzwerke sind die Thioredoxin Reduktase-Thioredoxin (TrxR/Trx) und Glutathion Reduktase-Glutathion-Glutaredoxin (GR/GSH/Grx) Systeme, die ĂŒber Redox-Schalter in Substratproteinen lebenswichtige zellulĂ€re Funktionen steuern und so an der Redox-Regulation und -SignalĂŒbertragung beteiligt sind. Persistente VerĂ€nderungen des Redoxmilieus in pathologischen ZustĂ€nden, wie z. B. bei Krebs, sind in hohem Maße mit dem Trx-System verbunden. Eine Hochregulierung und/oder ÜberaktivitĂ€t des Trx-Systems, die bei vielen Krebsarten auftreten, unterstĂŒtzt zudem das Fortschreiten des Krebswachstums, was TrxR/Trx zu vielversprechenden Zielproteinen fĂŒr die Entwicklung neuer Krebsmedikamente macht. Um die biochemischen Prozesse dahinter zu erforschen, sind spezielle Techniken zur Visualisierung und Messung enzymatischer AktivitĂ€t nötig. Die hierzu geeigneten, meist genetischen Sensoren messen ratiometrisch das VerhĂ€ltnis reduzierter/oxidierter Spezies in zellulĂ€rem Umfeld oder spezifisch ausgewĂ€hlte Redoxpaare. Die weitere Erforschung der exakten Funktion von TrxR/Trx und deren Substrate ist jedoch durch mangelnde Nachweismethoden limitiert. Diese sind außerdem zur Validierung chemischer Hemmstoffe fĂŒr TrxR/Trx in Zellen und deren potenziellen Verwendung als Krebsmittel von großem Interesse. Bislang gibt es keinen selektiven zellulĂ€ren Trx-Inhibitor und potenzielle Off-Target-Effekte der bekannten TrxR-Inhibitoren wurden nicht abschließend bewertet. Ziel dieser Arbeit ist die Entwicklung niedermolekularer, diagnostischer und therapeutischer Werkzeuge, die selektiv auf das Trx-System abzielen und auf einem modularen Trigger-Cargo Design basieren. Hierzu werden zyklische Disulfid-Substrate (Trigger) fĂŒr Oxidoreduktasen so mit molekularen Wirkstoffen (Cargo) verknĂŒpft, dass dabei die WirkstoffaktivitĂ€t maskiert, und erst nach Reduktion durch ein Zielprotein wiederhergestellt wird. Diese neuartigen, synthetischen Reduktionssensoren basieren auf den folgenden Grundprinzipien: (i) Zyklische Disulfide sind thermodynamisch stabilisiert und können nur durch die stĂ€rksten Reduktasen gespalten werden; und (ii) die zyklische Topologie ermöglicht die kinetische ReversibilitĂ€t der zwei Thiol-Disulfid-Austauschreaktionen, die eine erste Reaktion mit Monothiolen, wie z. B. GSH, sofort umkehrt und so eine vollstĂ€ndige Reduktion verhindert. Die meisten frĂŒheren Arbeiten auf diesem Gebiet verwendeten ein zyklisches, fĂŒnfgliedriges Disulfid (1,2 Dithiolan) als Substrat fĂŒr TrxR. Das gleiche Strukturmotiv wurde jedoch an anderer Stelle als thermodynamisch instabil beschrieben und aufgrund dieser Eigenschaft explizit fĂŒr dynamische Kaskadenreaktionen verwendet. Deshalb vergleicht diese Arbeit zu Beginn einen neuen 1,2 Dithiolan basierten fluorogenen Indikator mit bestehenden, z. T. kommerziellen, Redox Sonden fĂŒr TrxR in einer Reihe von Zellkultur-Experimenten unter Modulation der zellulĂ€ren TrxR AktivitĂ€t und stellt so einen Widerspruch in der Literatur klar: 1,2 Dithiolane eignen sich nicht als selektive Substrate fĂŒr TrxR, da sie labil sowohl gegen die Reduktion durch andere Redoxproteine, als auch gegen den Monothiol Hintergrund in Zellen sind (Nat. Commun. 2022). Als alternatives Strukturmotiv wird in dieser Arbeit ein bizyklisches sechsgliedriges Disulfid (anneliertes 1,2 Dithian) etabliert. Durch sein niedriges Reduktionspotenzial, also seine hohe Resistenz gegen Reduktion, werden molekulare Sonden basierend auf diesem 1,2 Dithian als Reduktionssensor fast ausschließlich von Trx aktiviert, nicht aber von TrxR oder GSH (JACS 2021). Dieses Kernmotiv bestimmt dabei die Reduzierbarkeit, und damit die EnzymspezifitĂ€t, durch seine zyklische Natur und die Annelierung, auch unter Verwendung unterschiedlicher Farb-/Wirkstoffe. Auf dieser Grundlage konnte die molekulare Struktur durch einen weiteren Modifikationspunkt fĂŒr die flexible Verwendung weiterer funktioneller Einheiten ergĂ€nzt werden. Obwohl zellulĂ€re Studien ergaben, dass diese neuartigen 1,2 Dithian Einheiten in Zellen sowohl Trx als auch das strukturell verwandte Grx adressieren, sind die daraus resultierenden diagnostischen MolekĂŒle wertvoll, um den katalytischen Umsatz zellulĂ€rer Dithiol-Reduktasen, der sogenannten Trx Superfamilie, selektiv anzuzeigen (Preprint 2023). BegĂŒnstigt durch das modulare MolekĂŒldesign stellt diese Arbeit zudem das erste Reportersystem RX1 zum selektiven Nachweis der TrxR-AktivitĂ€t in Zellen vor. Es basiert auf der Verwendung eines zyklischen, unsymmetrischen Selenenylsulfid-Sensors (1,2 Thiaselenan), der selektiv von dem einzigartigen Selenolat der TrxR angegriffen wird, und dadurch letztlich nur von TrxR reduziert werden kann. RX1 eignete sich zudem fĂŒr eine Hochdurchsatz-Validierung bestehender TrxR Inhibitoren und unterstreicht dadurch den kommerziellen Nutzen derartiger Diagnostika (Chem 2022). Das zentrale Trigger-Cargo Konzept dieser Arbeit wurde fĂŒr therapeutische Zwecke weiterentwickelt und nutzt dabei den einzigartigen Wirkmechanismus der Duocarmycin-Naturstoffklasse (CBI) (JACS Au 2022) zur Entwicklung reduktiv aktivierbarer Therapeutika. CBI Prodrugs basierend auf stabilisierten Redox-Schaltern (1,2 Dithiane fĂŒr Trx; 1,2 Thiaselenan fĂŒr TrxR) reagierten signifikant auf TrxR-Modulation in Zellen. Sie wurden darĂŒber hinaus durch das Referenzieren ihrer AktivitĂ€t gegenĂŒber nicht-reduzierbaren KontrollmolekĂŒle fĂŒr die Erstellung zelllinienabhĂ€ngiger Profile der ReduktaseaktivitĂ€t in 177 Zelllinien genutzt. Schließlich waren diese neuen Krebsmittel im Tiermodell gut vertrĂ€glich und zeigten in zwei verschiedenen Mausmodellen eine krebshemmende Wirkung (Preprint 2022b). Zusammenfassend prĂ€sentiert diese Dissertation monothiol-resistente reduzierbare Trigger-Einheiten fĂŒr das zellulĂ€re Trx-System zur Entwicklung neuartiger, selektiver Reporter-Sonden, sowie eine neue Klasse reduktiv aktivierbarer Krebsmittel auf Basis eines adaptierbaren Trigger-Cargo Designs. Diese fanden entweder zur selektiven Messung zellulĂ€rer ProteinaktivitĂ€t oder zum Einsatz als Antikrebsmittel Verwendung. Es wurden chemokompatible Motive sowohl fĂŒr TrxR als auch fĂŒr Trx/Grx identifiziert, wobei deren zyklische Natur eine Aktivierung durch GSH verhindert. Eine weitere Differenzierung zwischen den beiden Redox-Proteinen Trx und Grx und anderen Proteinen der Trx-Superfamilie erfordert eine zusĂ€tzliche Ebene der Selektierung, z. B. durch molekulare Erkennung, und ist Gegenstand laufender Arbeiten. Die flexible Verwendung verschiedener molekularer Wirkstoffe ermöglicht dabei die „Pipeline-Entwicklung“ von Diagnostika und Therapeutika, die von der zellulĂ€ren Redox-Maschinerie analog umgesetzt werden, und dadurch Schlussfolgerungen aus der Diagnostik direkt auf eine Therapie ĂŒbertragbar machen. Dies birgt großes Potenzial fĂŒr kĂŒnftige Entwicklungen bei einer potenziellen Übertragung des modularen Konzepts auf andere Enzymklassen und therapeutische Einsatzgebiete
    • 

    corecore