227,813 research outputs found

    ASRP: the Arabidopsis Small RNA Project Database

    Get PDF
    Eukaryotes produce functionally diverse classes of small RNAs (20–25 nt). These include microRNAs (miRNAs), which act as regulatory factors during growth and development, and short-interfering RNAs (siRNAs), which function in several epigenetic and post-transcriptional silencing systems. The Arabidopsis Small RNA Project (ASRP) seeks to characterize and functionally analyze the major classes of endogenous small RNAs in plants. The ASRP database provides a repository for sequences of small RNAs cloned from various Arabidopsis genotypes and tissues. Version 3.0 of the database contains 1920 unique sequences, with tools to assist in miRNA and siRNA identification and analysis. The comprehensive database is publicly available through a web interface at http://asrp.cgrb.oregonstate.edu

    5SRNAdb: an information resource for 5S ribosomal RNAs

    Get PDF
    Ribosomal 5S RNA (5S rRNA) is the ubiquitous RNA component found in the large subunit of ribosomes in all known organisms. Due to its small size, abundance and evolutionary conservation 5S rRNA for many years now is used as a model molecule in studies on RNA structure, RNA–protein interactions and molecular phylogeny. 5SRNAdb (http://combio.pl/5srnadb/) is the first database that provides a high quality reference set of ribosomal 5S RNAs (5S rRNA) across three domains of life. Here, we give an overview of new developments in the database and associated web tools since 2002, including updates to database content, curation processes and user web interfaces

    decodeRNA-predicting non-coding RNA functions using guilt-by-association

    Get PDF
    Although the long non-coding RNA (lncRNA) landscape is expanding rapidly, only a small number of lncRNAs have been functionally annotated. Here, we present decodeRNA (http://www.decoderna.org), a database providing functional contexts for both human lncRNAs and microRNAs in 29 cancer and 12 normal tissue types. With state-of-the-art data mining and visualization options, easy access to results and a straightforward user interface, decodeRNA aims to be a powerful tool for researchers in the ncRNA field

    Update of ASRP: the Arabidopsis Small RNA Project database

    Get PDF
    Development of the Arabidopsis Small RNA Project (ASRP) Database, which provides information and tools for the analysis of microRNA, endogenous siRNA and other small RNA-related features, has been driven by the introduction of high-throughput sequencing technology. To accommodate the demands of increased data, numerous improvements and updates have been made to ASRP, including new ways to access data, more efficient algorithms for handling data, and increased integration with community-wide resources. New search and visualization tools have also been developed to improve access to small RNA classes and their targets. ASRP is publicly available through a web interface at http://asrp.cgrb.oregonstate.edu/db

    snoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs

    Get PDF
    The snoRNA-LBME-db is a dedicated database containing human C/D box and H/ACA box small nucleolar RNAs (snoRNAs), and small Cajal body-specific RNAs (scaRNAs). C/D box and H/ACA box snoRNAs are part of ribonucleoparticles that guide 2′-O-ribose methylation and pseudouridilation, respectively, of selected residues of 28S, 18S or 5.8S rRNAs or of the spliceosomal U6 RNA. Similarly, scaRNAs guide modifications of the spliceosomal RNAs transcribed by RNA polymerase II (U1, U2, U4, U5 and U12) and are often composed of both C/D box and H/ACA box domains. However, some snoRNAs do not function as modification guide RNAs, but rather as RNA chaperones during the maturation of pre-rRNA. The database was built by a compilation of the literature, and comprises human sno/scaRNAs that were experimentally verified, as well as the human orthologs of snoRNAs that were cloned in other vertebrate species, and some snoRNAs that are predicted by bioinformatics search in loci submitted to genomic imprinting, but have not all been experimentally verified. For each entry, the database identifies the modified nucleotide(s) in the target RNA(s), indicates the corresponding predicted base pairing, gives a few pertinent references and provides a link to the position of the sno/scaRNA on the UCSC Genome Browser. The ‘Find guide RNA’ function allows one to find the sno/scaRNAs predicted to guide the modification of a particular nucleotide in the rRNA and spliceosomal RNA sequences. The ‘Browse’ function allows one to download the sequences of selected sno/scaRNAs in the FASTA format. The database is available online at . It can also be accessed from the human UCSC Genome Browser via the sno/miRNA track

    The Subviral RNA Database: a toolbox for viroids, the hepatitis delta virus and satellite RNAs research

    Get PDF
    BACKGROUND: Viroids, satellite RNAs, satellites viruses and the human hepatitis delta virus form the 'brotherhood' of the smallest known infectious RNA agents, known as the subviral RNAs. For most of these species, it is generally accepted that characteristics such as cell movement, replication, host specificity and pathogenicity are encoded in their RNA sequences and their resulting RNA structures. Although many sequences are indexed in publicly available databases, these sequence annotation databases do not provide the advanced searches and data manipulation capability for identifying and characterizing subviral RNA motifs. DESCRIPTION: The Subviral RNA database is a web-based environment that facilitates the research and analysis of viroids, satellite RNAs, satellites viruses, the human hepatitis delta virus, and related RNA sequences. It integrates a large number of Subviral RNA sequences, their respective RNA motifs, analysis tools, related publication links and additional pertinent information (ex. links, conferences, announcements), allowing users to efficiently retrieve and analyze relevant information about these small RNA agents. CONCLUSION: With its design, the Subviral RNA Database could be considered as a fundamental building block for the study of these related RNAs. It is freely available via a web browser at the URL:

    HuSiDa—the human siRNA database: an open-access database for published functional siRNA sequences and technical details of efficient transfer into recipient cells

    Get PDF
    Small interfering RNAs (siRNAs) have become a standard tool in functional genomics. Once incorporated into the RNA-induced silencing complex (RISC), siRNAs mediate the specific recognition of corresponding target mRNAs and their cleavage. However, only a small fraction of randomly chosen siRNA sequences is able to induce efficient gene silencing. In common laboratory practice, successful RNA interference experiments typically require both, the labour and cost-intensive identification of an active siRNA sequence and the optimization of target cell line-specific procedures for optimal siRNA delivery. To optimize the design and performance of siRNA experiments, we have established the human siRNA database (HuSiDa). The database provides sequences of published functional siRNA molecules targeting human genes and important technical details of the corresponding gene silencing experiments, including the mode of siRNA generation, recipient cell lines, transfection reagents and procedures and direct links to published references (PubMed). The database can be accessed at http://www.human-siRNA-database.net. We used the siRNA sequence information stored in the database for scrutinizing published sequence selection parameters for efficient gene silencing

    Sequence–structure relationships in RNA loops: establishing the basis for loop homology modeling

    Get PDF
    The specific function of RNA molecules frequently resides in their seemingly unstructured loop regions. We performed a systematic analysis of RNA loops extracted from experimentally determined three-dimensional structures of RNA molecules. A comprehensive loop-structure data set was created and organized into distinct clusters based on structural and sequence similarity. We detected clear evidence of the hallmark of homology present in the sequence–structure relationships in loops. Loops differing by <25% in sequence identity fold into very similar structures. Thus, our results support the application of homology modeling for RNA loop model building. We established a threshold that may guide the sequence divergence-based selection of template structures for RNA loop homology modeling. Of all possible sequences that are, under the assumption of isosteric relationships, theoretically compatible with actual sequences observed in RNA structures, only a small fraction is contained in the Rfam database of RNA sequences and classes implying that the actual RNA loop space may consist of a limited number of unique loop structures and conserved sequences. The loop-structure data sets are made available via an online database, RLooM. RLooM also offers functionalities for the modeling of RNA loop structures in support of RNA engineering and design efforts

    Deep Learning and Random Forest-Based Augmentation of sRNA Expression Profiles

    Full text link
    The lack of well-structured annotations in a growing amount of RNA expression data complicates data interoperability and reusability. Commonly - used text mining methods extract annotations from existing unstructured data descriptions and often provide inaccurate output that requires manual curation. Automatic data-based augmentation (generation of annotations on the base of expression data) can considerably improve the annotation quality and has not been well-studied. We formulate an automatic augmentation of small RNA-seq expression data as a classification problem and investigate deep learning (DL) and random forest (RF) approaches to solve it. We generate tissue and sex annotations from small RNA-seq expression data for tissues and cell lines of homo sapiens. We validate our approach on 4243 annotated small RNA-seq samples from the Small RNA Expression Atlas (SEA) database. The average prediction accuracy for tissue groups is 98% (DL), for tissues - 96.5% (DL), and for sex - 77% (DL). The "one dataset out" average accuracy for tissue group prediction is 83% (DL) and 59% (RF). On average, DL provides better results as compared to RF, and considerably improves classification performance for 'unseen' datasets
    corecore