92 research outputs found

    3D Deep Learning for Anatomical Structure Segmentation in Multiple Imaging Modalities

    Get PDF
    Accurate, automated quantitative segmentation of anatomical structures in radiological scans, such as Magnetic Resonance Imaging (MRI) and Computer Tomography (CT), can produce significant biomarkers and can be integrated into computer-aided diagnosis (CADx) systems to support the in- terpretation of medical images from multi-protocol scanners. However, there are serious challenges towards developing robust automated segmentation techniques, including high variations in anatomical structure and size, varying image spatial resolutions resulting from different scanner protocols, and the presence of blurring artefacts. This paper presents a novel computing ap- proach for automated organ and muscle segmentation in medical images from multiple modalities by harnessing the advantages of deep learning techniques in a two-part process. (1) a 3D encoder-decoder, Rb-UNet, builds a localisation model and a 3D Tiramisu network generates a boundary-preserving segmentation model for each target structure; (2) the fully trained Rb-UNet predicts a 3D bounding box encapsulating the target structure of interest, after which the fully trained Tiramisu model performs segmentation to reveal organ or muscle boundaries for every protrusion and indentation. The proposed approach is evaluated on six different datasets, including MRI, Dynamic Contrast Enhanced (DCE) MRI and CT scans targeting the pancreas, liver, kidneys and iliopsoas muscles. We achieve quantitative measures of mean Dice similarity coefficient (DSC) that surpasses or are comparable with the state-of-the-art and demonstrate statistical stability. A qualitative evaluation performed by two independent experts in radiology and radiography verified the preservation of detailed organ and muscle boundaries

    Automatic Pancreas Segmentation and 3D Reconstruction for Morphological Feature Extraction in Medical Image Analysis

    Get PDF
    The development of highly accurate, quantitative automatic medical image segmentation techniques, in comparison to manual techniques, remains a constant challenge for medical image analysis. In particular, segmenting the pancreas from an abdominal scan presents additional difficulties: this particular organ has very high anatomical variability, and a full inspection is problematic due to the location of the pancreas behind the stomach. Therefore, accurate, automatic pancreas segmentation can consequently yield quantitative morphological measures such as volume and curvature, supporting biomedical research to establish the severity and progression of a condition, such as type 2 diabetes mellitus. Furthermore, it can also guide subject stratification after diagnosis or before clinical trials, and help shed additional light on detecting early signs of pancreatic cancer. This PhD thesis delivers a novel approach for automatic, accurate quantitative pancreas segmentation in mostly but not exclusively Magnetic Resonance Imaging (MRI), by harnessing the advantages of machine learning and classical image processing in computer vision. The proposed approach is evaluated on two MRI datasets containing 216 and 132 image volumes, achieving a mean Dice similarity coefficient (DSC) of 84:1 4:6% and 85:7 2:3% respectively. In order to demonstrate the universality of the approach, a dataset containing 82 Computer Tomography (CT) image volumes is also evaluated and achieves mean DSC of 83:1 5:3%. The proposed approach delivers a contribution to computer science (computer vision) in medical image analysis, reporting better quantitative pancreas segmentation results in comparison to other state-of-the-art techniques, and also captures detailed pancreas boundaries as verified by two independent experts in radiology and radiography. The contributions’ impact can support the usage of computational methods in biomedical research with a clinical translation; for example, the pancreas volume provides a prognostic biomarker about the severity of type 2 diabetes mellitus. Furthermore, a generalisation of the proposed segmentation approach successfully extends to other anatomical structures, including the kidneys, liver and iliopsoas muscles using different MRI sequences. Thus, the proposed approach can incorporate into the development of a computational tool to support radiological interpretations of MRI scans obtained using different sequences by providing a “second opinion”, help reduce possible misdiagnosis, and consequently, provide enhanced guidance towards targeted treatment planning

    Computational Methods for Segmentation of Multi-Modal Multi-Dimensional Cardiac Images

    Get PDF
    Segmentation of the heart structures helps compute the cardiac contractile function quantified via the systolic and diastolic volumes, ejection fraction, and myocardial mass, representing a reliable diagnostic value. Similarly, quantification of the myocardial mechanics throughout the cardiac cycle, analysis of the activation patterns in the heart via electrocardiography (ECG) signals, serve as good cardiac diagnosis indicators. Furthermore, high quality anatomical models of the heart can be used in planning and guidance of minimally invasive interventions under the assistance of image guidance. The most crucial step for the above mentioned applications is to segment the ventricles and myocardium from the acquired cardiac image data. Although the manual delineation of the heart structures is deemed as the gold-standard approach, it requires significant time and effort, and is highly susceptible to inter- and intra-observer variability. These limitations suggest a need for fast, robust, and accurate semi- or fully-automatic segmentation algorithms. However, the complex motion and anatomy of the heart, indistinct borders due to blood flow, the presence of trabeculations, intensity inhomogeneity, and various other imaging artifacts, makes the segmentation task challenging. In this work, we present and evaluate segmentation algorithms for multi-modal, multi-dimensional cardiac image datasets. Firstly, we segment the left ventricle (LV) blood-pool from a tri-plane 2D+time trans-esophageal (TEE) ultrasound acquisition using local phase based filtering and graph-cut technique, propagate the segmentation throughout the cardiac cycle using non-rigid registration-based motion extraction, and reconstruct the 3D LV geometry. Secondly, we segment the LV blood-pool and myocardium from an open-source 4D cardiac cine Magnetic Resonance Imaging (MRI) dataset by incorporating average atlas based shape constraint into the graph-cut framework and iterative segmentation refinement. The developed fast and robust framework is further extended to perform right ventricle (RV) blood-pool segmentation from a different open-source 4D cardiac cine MRI dataset. Next, we employ convolutional neural network based multi-task learning framework to segment the myocardium and regress its area, simultaneously, and show that segmentation based computation of the myocardial area is significantly better than that regressed directly from the network, while also being more interpretable. Finally, we impose a weak shape constraint via multi-task learning framework in a fully convolutional network and show improved segmentation performance for LV, RV and myocardium across healthy and pathological cases, as well as, in the challenging apical and basal slices in two open-source 4D cardiac cine MRI datasets. We demonstrate the accuracy and robustness of the proposed segmentation methods by comparing the obtained results against the provided gold-standard manual segmentations, as well as with other competing segmentation methods

    Detection-aided medical image segmentation using deep learning

    Get PDF
    The details of the work will be defined once the student reaches the destination institution.A fully automatic technique for segmenting the liver and localizing its unhealthy tissues is a convenient tool in order to diagnose hepatic diseases and also to assess the response to the according treatments. In this thesis we propose a method to segment the liver and its lesions from Computed Tomography (CT) scans, as well as other anatomical structures and organs of the human body. We have used Convolutional Neural Networks (CNNs), that have proven good results in a variety of tasks, including medical imaging. The network to segment the lesions consists of a cascaded architecture, which first focuses on the liver region in order to segment the lesion. Moreover, we train a detector to localize the lesions and just keep those pixels from the output of the segmentation network where a lesion is detected. The segmentation architecture is based on DRIU (Maninis, 2016), a Fully Convolutional Network (FCN) with side outputs that work at feature maps of different resolutions, to finally benefit from the multi-scale information learned by different stages of the network. Our pipeline is 2.5D, as the input of the network is a stack of consecutive slices of the CT scans. We also study different methods to benefit from the liver segmentation in order to delineate the lesion. The main focus of this work is to use the detector to localize the lesions, as we demonstrate that it helps to remove false positives triggered by the segmentation network. The benefits of using a detector on top of the segmentation is that the detector acquires a more global insight of the healthiness of a liver tissue compared to the segmentation network, whose final output is pixel-wise and is not forced to take a global decision over a whole liver patch. We show experiments with the LiTS dataset for the lesion and liver segmentation. In order to prove the generality of the segmentation network, we also segment several anatomical structures from the Visceral dataset

    Deep Learning for Automated Medical Image Analysis

    Get PDF
    Medical imaging is an essential tool in many areas of medical applications, used for both diagnosis and treatment. However, reading medical images and making diagnosis or treatment recommendations require specially trained medical specialists. The current practice of reading medical images is labor-intensive, time-consuming, costly, and error-prone. It would be more desirable to have a computer-aided system that can automatically make diagnosis and treatment recommendations. Recent advances in deep learning enable us to rethink the ways of clinician diagnosis based on medical images. In this thesis, we will introduce 1) mammograms for detecting breast cancers, the most frequently diagnosed solid cancer for U.S. women, 2) lung CT images for detecting lung cancers, the most frequently diagnosed malignant cancer, and 3) head and neck CT images for automated delineation of organs at risk in radiotherapy. First, we will show how to employ the adversarial concept to generate the hard examples improving mammogram mass segmentation. Second, we will demonstrate how to use the weakly labeled data for the mammogram breast cancer diagnosis by efficiently design deep learning for multi-instance learning. Third, the thesis will walk through DeepLung system which combines deep 3D ConvNets and GBM for automated lung nodule detection and classification. Fourth, we will show how to use weakly labeled data to improve existing lung nodule detection system by integrating deep learning with a probabilistic graphic model. Lastly, we will demonstrate the AnatomyNet which is thousands of times faster and more accurate than previous methods on automated anatomy segmentation.Comment: PhD Thesi

    Automatic Segmentation of Mandible from Conventional Methods to Deep Learning-A Review

    Get PDF
    Medical imaging techniques, such as (cone beam) computed tomography and magnetic resonance imaging, have proven to be a valuable component for oral and maxillofacial surgery (OMFS). Accurate segmentation of the mandible from head and neck (H&N) scans is an important step in order to build a personalized 3D digital mandible model for 3D printing and treatment planning of OMFS. Segmented mandible structures are used to effectively visualize the mandible volumes and to evaluate particular mandible properties quantitatively. However, mandible segmentation is always challenging for both clinicians and researchers, due to complex structures and higher attenuation materials, such as teeth (filling) or metal implants that easily lead to high noise and strong artifacts during scanning. Moreover, the size and shape of the mandible vary to a large extent between individuals. Therefore, mandible segmentation is a tedious and time-consuming task and requires adequate training to be performed properly. With the advancement of computer vision approaches, researchers have developed several algorithms to automatically segment the mandible during the last two decades. The objective of this review was to present the available fully (semi)automatic segmentation methods of the mandible published in different scientific articles. This review provides a vivid description of the scientific advancements to clinicians and researchers in this field to help develop novel automatic methods for clinical applications

    Multi-modality Medical Image Segmentation with Unsupervised Domain Adaptation

    Get PDF
    Advances in medical imaging have greatly aided in providing accurate and fast medical diagnosis, followed by recent deep learning developments enabling the efficient and cost-effective analysis of medical images. Among different image processing tasks, medical segmentation is one of the most crucial aspects because it provides the class, location, size, and shape of the subject of interest, which is invaluable and essential for diagnostics. Nevertheless, acquiring annotations for training data usually requires expensive manpower and specialised expertise, making supervised training difficult. To overcome these problems, unsupervised domain adaptation (UDA) has been adopted to bridge knowledge between different domains. Despite the appearance dissimilarities of different modalities such as MRI and CT, researchers have concluded that structural features of the same anatomy are universal across modalities, which unfolded the study of multi-modality image segmentation with UDA methods. The traditional UDA research tackled the domain shift problem by minimising the distance of the source and target distributions in latent spaces with the help of advanced mathematics. However, with the recent development of the generative adversarial network (GAN), the adversarial UDA methods have shown outstanding performance by producing synthetic images to mitigate the domain gap in training a segmentation network for the target domain. Most existing studies focus on modifying the network architecture, but few investigate the generative adversarial training strategy. Inspired by the recent success of state-of-the-art data augmentation techniques in classification tasks, we designed a novel mix-up strategy to assist GAN training for the better synthesis of structural details, consequently leading to better segmentation results. In this thesis, we propose SynthMix, an add-on module with a natural yet effective training policy that can promote synthetic quality without altering the network architecture. SynthMix is a mix-up synthesis scheme designed for integration with the adversarial logic of GAN networks. Traditional GAN approaches judge an image as a whole which could be easily dominated by discriminative features, resulting in little improvement of delicate structures in synthesis. In contrast, SynthMix uses the data augmentation technique to reinforce detail transformation at local regions. Specifically, it coherently mixes up aligned images of real and synthetic samples at local regions to stimulate the generation of fine-grained features examined by an associated inspector for domain-specific details. We evaluated our method on two segmentation benchmarks among three publicly available datasets. Our method showed a significant performance gain compared with existing state-of-the-art approaches
    • …
    corecore