80 research outputs found

    Radio frequency energy harvesting for autonomous systems

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Doctor of PhilosophyRadio Frequency Energy Harvesting (RFEH) is a technology which enables wireless power delivery to multiple devices from a single energy source. The main components of this technology are the antenna and the rectifying circuitry that converts the RF signal into DC power. The devices which are using Radio Frequency (RF) power may be integrated into Wireless Sensor Networks (WSN), Radio Frequency Identification (RFID), biomedical implants, Internet of Things (IoT), Unmanned Aerial Vehicles (UAVs), smart meters, telemetry systems and may even be used to charge mobile phones. Aside from autonomous systems such as WSNs and RFID, the multi-billion portable electronics market – from GSM phones to MP3 players – would be an attractive application for RF energy harvesting if the power requirements are met. To investigate the potential for ambient RFEH, several RF site surveys were conducted around London. Using the results from these surveys, various harvesters were designed and tested for different frequency bands from the RF sources with the highest power density within the Medium Wave (MW), ultra- and super-high (UHF and SHF) frequency spectrum. Prototypes were fabricated and tested for each of the bands and proved that a large urban area around Brookmans park radio centre is suitable location for harvesting ambient RF energy. Although the RFEH offers very good efficiency performance, if a single antenna is considered, the maximum power delivered is generally not enough to power all the elements of an autonomous system. In this thesis we present techniques for optimising the power efficiency of the RFEH device under demanding conditions such as ultra-low power densities, arbitrary polarisation and diverse load impedances. Subsequently, an energy harvesting ferrite rod rectenna is designed to power up a wireless sensor and its transmitter, generating dedicated Medium Wave (MW) signals in an indoor environment. Harvested power management, application scenarios and practical results are also presented

    Enhancement of Rectenna Performance using Artificial Magnetic Conductor for Energy Harvesting Applications

    Get PDF
    This paper brings together an understanding on Artificial Magnetic Conductor (AMC) and rectenna in energy harvesting applications. The rectenna is built upon a combination of a low profile antenna like dipole or patch microstrip with the  presence of a rectifying circuit as well as a filter to act as an RF to DC converter. In wireless power transmission, the focal problem is that the total capture of the RF energy is totally low. Thus, with the aim of capturing maximum power, the receiving antenna is supposed to be designed applicably by taking contemplation of several aspects especially the gain. AMC helps to improve the performance of an antenna, hence enhancing the execution of wireless power transmission system of the rectenna. Wireless sensor network is one of the application in wireless power transmission system that applied the approach of energy harvesting, where it is considered to be a practical and deployable solution for today’s technology. Two designs of AMC had been proposed; a rectangular AMC using RO3003 substrate and a square AMC using RO3010 substrate. Simulation results show that the square AMC gives better performance through gain enhancement by 3.529 dB of a half-wave wire dipole antenna with an overall size of 122.45 mm x 122.45 mm

    Enhancement of Rectenna Performance using Artificial Magnetic Conductor for Energy Harvesting Applications

    Get PDF
    This paper brings together an understanding on Artificial Magnetic Conductor (AMC) and rectenna in energy harvesting applications. The rectenna is built upon a combination of a low profile antenna like dipole or patch microstrip with the presence of a rectifying circuit as well as a filter to act as an RF to DC converter. In wireless power transmission, the focal problem is that the total capture of the RF energy is totally low. Thus, with the aim of capturing maximum power, the receiving antenna is supposed to be designed applicably by taking contemplation of several aspects especially the gain. AMC helps to improve the performance of an antenna, hence enhancing the execution of wireless power transmission system of the rectenna. Wireless sensor network is one of the application in wireless power transmission system that applied the approach of energy harvesting, where it is considered to be a practical and deployable solution for today’s technology. Two designs of AMC had been proposed; a rectangular AMC using RO3003 substrate and a square AMC using RO3010 substrate. Simulation results show that the square AMC gives better performance through gain enhancement by 3.529 dB of a half-wave wire dipole antenna with an overall size of 122.45 mm x 122.45 mm

    Ambient RF energy harvesting and efficient DC-load inductive power transfer

    Get PDF
    This thesis analyses in detail the technology required for wireless power transfer via radio frequency (RF) ambient energy harvesting and an inductive power transfer system (IPT). Radio frequency harvesting circuits have been demonstrated for more than fifty years, but only a few have been able to harvest energy from freely available ambient (i.e. non-dedicated) RF sources. To explore the potential for ambient RF energy harvesting, a city-wide RF spectral survey was undertaken in London. Using the results from this survey, various harvesters were designed to cover four frequency bands from the largest RF contributors within the ultra-high frequency (0.3 to 3 GHz) part of the frequency spectrum. Prototypes were designed, fabricated and tested for each band and proved that approximately half of the London Underground stations were found to be suitable locations for harvesting ambient RF energy using the prototypes. Inductive Power Transfer systems for transmitting tens to hundreds of watts have been reported for almost a decade. Most of the work has concentrated on the optimization of the link efficiency and have not taken into account the efficiency of the driver and rectifier. Class-E amplifiers and rectifiers have been identified as ideal drivers for IPT applications, but their power handling capability at tens of MHz has been a crucial limiting factor, since the load and inductor characteristics are set by the requirements of the resonant inductive system. The frequency limitation of the driver restricts the unloaded Q-factor of the coils and thus the link efficiency. The system presented in this work alleviates the use of heavy and expensive field-shaping techniques by presenting an efficient IPT system capable of transmitting energy with high dc-to-load efficiencies at 6 MHz across a distance of 30 cm.Open Acces

    RF energy harvesters for wireless sensors, state of the art, future prospects and challenges: a review

    Get PDF
    The power consumption of portable gadgets, implantable medical devices (IMDs) and wireless sensor nodes (WSNs) has reduced significantly with the ongoing progression in low-power electronics and the swift advancement in nano and microfabrication. Energy harvesting techniques that extract and convert ambient energy into electrical power have been favored to operate such low-power devices as an alternative to batteries. Due to the expanded availability of radio frequency (RF) energy residue in the surroundings, radio frequency energy harvesters (RFEHs) for low-power devices have garnered notable attention in recent times. This work establishes a review study of RFEHs developed for the utilization of low-power devices. From the modest single band to the complex multiband circuitry, the work reviews state of the art of required circuitry for RFEH that contains a receiving antenna, impedance matching circuit, and an AC-DC rectifier. Furthermore, the advantages and disadvantages associated with various circuit architectures are comprehensively discussed. Moreover, the reported receiving antenna, impedance matching circuit, and an AC-DC rectifier are also compared to draw conclusions towards their implementations in RFEHs for sensors and biomedical devices applications

    Microwave Antennas for Energy Harvesting Applications

    Get PDF
    In the last few years, the demand for power has increased; therefore, the need for alternate energy sources has become essential. Sources of fossil fuels are finite, are costly, and causes environmental hazard. Sustainable, environmentally benign energy can be derived from nuclear fission or captured from ambient sources. Large-scale ambient energy is widely available and large-scale technologies are being developed to efficiently capture it. At the other end of the scale, there are small amounts of wasted energy that could be useful if captured. There are various types of external energy sources such as solar, thermal, wind, and RF energy. Energy has been harvested for different purposes in the last few recent years. Energy harvesting from inexhaustible sources with no adverse environmental effect can provide unlimited energy for harvesting in a way of powering an embedded system from the environment. It could be RF energy harvesting by using antennas that can be held on the car glass or building, or in any places. The abundant RF energy is harvested from surrounding sources. This chapter focuses on RF energy harvesting in which the abundant RF energy from surrounding sources, such as nearby mobile phones, wireless LANs (WLANs), Wi-Fi, FM/AM radio signals, and broadcast television signals or DTV, is captured by a receiving antenna and rectified into a usable DC voltage. A practical approach for RF energy harvesting design and management of the harvested and available energy for wireless sensor networks is to improve the energy efficiency and large accepted antenna gain. The emerging self-powered systems challenge and dictate the direction of research in energy harvesting (EH). There are a lot of applications of energy harvesting such as wireless weather stations, car tire pressure monitors, implantable medical devices, traffic alert signs, and mars rover. A lot of researches are done to create several designs of rectenna (antenna and rectifier) that meet various objectives for use in RF energy harvesting, whatever opaque or transparent. However, most of the designed antennas are opaque and prevent the sunlight to pass through, so it is hard to put it on the car glass or window. Thus, there should be a design for transparent antenna that allows the sunlight to pass through. Among various antennas, microstrip patch antennas are widely used because they are low profile, are lightweight, and have planar structure. Microstrip patch-structured rectennas are evaluated and compared with an emphasis on the various methods adopted to obtain a rectenna with harmonic rejection functionality, frequency, and polarization selectivity. Multiple frequency bands are tapped for energy harvesting, and this aspect of the implementation is one of the main focus points. The bands targeted for harvesting in this chapter will be those that are the most readily available to the general population. These include Wi-Fi hotspots, as well as cellular (900/850 MHz band), personal communications services (1800/1900 MHz band), and sources of 2.4 GHz and WiMAX (2.3/3.5 GHz) network transmitters. On the other hand, at high frequency, advances in nanotechnology have led to the development of semiconductor-based solar cells, nanoscale antennas for power harvesting applications, and integration of antennas into solar cells to design low-cost light-weight systems. The role of nanoantenna system is transforming thermal energy provided by the sun to electricity. Nanoantennas target the mid-infrared wavelengths where conventional photo voltaic cells are inefficient. However, the concept of using optical rectenna for harvesting solar energy was first introduced four decades ago. Recently, it has invited a surge of interest, with different laboratories around the world working on various aspects of the technology. The result is a technology that can be efficient and inexpensive, requiring only low-cost materials. Unlike conventional solar cells that harvest energy in visible light frequency range. Since the UV frequency range is much greater than visible light, we consider the quantum mechanical behavior of a driven particle in nanoscale antennas for power harvesting applications

    A compact low-power EM energy harvester using electrically small loop resonator

    Get PDF
    Electromagnetic (EM) energy harvester is a combination of an antenna or EM collector and a rectifier circuit. It is a concept that has seen applications in a variety of areas, as its essential purpose is to harvest and reuse the ambient microwave power. Compact system solutions for EM energy harvesting are presented and investigated in this work. The objective of this work is to reduce the size of the EM harvesters and simplify the fabrication process. A new approach to design a compact EM energy harvester which based on the concept of an electrically small square-loop collector, is proposed. Coplanar waveguide (CPW) transmission lines are utilized to build the half-wave rectifier. The input impedance of the rectifier is designed to be equaled to the conjugate of the impedance of the square-loop collector at the operating frequency. This method not only reduces the mismatch loss, but also reduces the overall size and simplifies the complexity of the system. The efficiency and the DC output power of the design are examined with respect to the power density on the EM harvester surface. Measurements demonstrate that the system is efficient to harvest EM energy in a low power density environment and generate a reasonable DC power. The proposed EM energy harvester is compact, easy to fabricate and integrate into other devices, and suitable for different energy harvesting applications. The mechanical flexibility of the proposed compact EM energy harvester is also discussed. The EM energy harvester is redesigned and fabricated on a thin flexible substrate. The performances are measured with respect to frequency in both planar and curvature configurations. The results show that the operating frequencies for both planar and curvature configurations do not vary. Furthermore, the output power of the two configurations at the operating frequency are very close to each other. The proposed flexible EM energy harvester requires a simpler fabrication process and a smaller size when compared to the previous work reported in the literature for EM energy harvesting at 2.45 GHz. A single element of EM energy harvester is insufficient for powering common devices. Therefore, two low-cost techniques are proposed and used to increase the capability of the system. In the first method, a parabolic reflector is designed, fabricated and placed behind the system to reflect the beam of parallel rays and concentrates the radiation power at the harvester surface. An alternate technique to boost the output DC power is based on using multi-square-loop collectors. Instead of using a rectifier circuit for each loop collector, multi collectors are combined before feeding into a single rectifier circuit. The experimental results show that these two techniques have significant improvement in the DC output power. The parabolic reflector technique can improve the DC output power by 35%, while in the case of the multi collectors technique, 4 times higher DC output power can be achieved

    Radio Frequency Energy Harvesting - Sources and Techniques

    Get PDF
    Energy harvesting technology is attracting huge attention and holds a promising future for generating electrical power. This process offers various environmentally friendly alternative energy sources. Especially, radio frequency (RF) energy has interesting key attributes that make it very attractive for low-power consumer electronics and wireless sensor networks (WSNs). Ambient RF energy could be provided by commercial RF broadcasting stations such as TV, GSM, Wi-Fi, or radar. In this study, particular attention is given to radio frequency energy harvesting (RFEH) as a green technology, which is very suitable for overcoming problems related to wireless sensor nodes located in harsh environments or inaccessible places. The aim of this paper is to review the progress achievements, the current approaches, and the future directions in the field of RF harvesting energy. Therefore, our aim is to provide RF energy harvesting techniques that open the possibility to power directly electronics or recharge secondary batteries. As a result, this overview is expected to lead to relevant techniques for developing an efficient RF energy harvesting system

    Smartphone-enabled Biotelemetric System For a Smart Contact Lens

    Get PDF
    Diabetes describes a disordered metabolic state with an overabundance of glucose in the bloodstream, due to insu cient production or utilization of insulin to allow tissue cells from consuming glucose. People with unmanaged diabetes could lead to many serious complications such as heart disease, stroke, coma, kidney failure, blindness, amputation, and premature death. Diabetes can be managed by monitoring the blood glucose level, and control the glucose level by taking insulin, and exercising a carefully planned lifestyle with appropriate diet and physical activities. An elegant solution for glucose monitoring is the integration of electrochemical-based glucose sensor and microelectronics within a contact lens, namely a smart contact lens, which can measure the tear glucose in the eye, and correlate it to blood glucose. Currently, there is no functional smart contact lens devices for glucose detection in the market. This thesis focuses on providing proof of concept prototypes for implementing energy harvesting and wireless data transmission on a smart contact lens. An all-in-one solution is proposed to harvest energy from a smartphone, and use the same smartphone to support glucose data extraction by backscattering. The appropriate prototype architectures are justi ed based on a system speci cation estimated from related works. The prototypes are designed in simulation, and then fabricated on PCBs using o -the-shelf components and equipment. Measurements are conducted on the prototypes to evaluate their performance against the initial assessment of requirements from related works
    corecore