1,147 research outputs found

    Content-Centric Networking at Internet Scale through The Integration of Name Resolution and Routing

    Full text link
    We introduce CCN-RAMP (Routing to Anchors Matching Prefixes), a new approach to content-centric networking. CCN-RAMP offers all the advantages of the Named Data Networking (NDN) and Content-Centric Networking (CCNx) but eliminates the need to either use Pending Interest Tables (PIT) or lookup large Forwarding Information Bases (FIB) listing name prefixes in order to forward Interests. CCN-RAMP uses small forwarding tables listing anonymous sources of Interests and the locations of name prefixes. Such tables are immune to Interest-flooding attacks and are smaller than the FIBs used to list IP address ranges in the Internet. We show that no forwarding loops can occur with CCN-RAMP, and that Interests flow over the same routes that NDN and CCNx would maintain using large FIBs. The results of simulation experiments comparing NDN with CCN-RAMP based on ndnSIM show that CCN-RAMP requires forwarding state that is orders of magnitude smaller than what NDN requires, and attains even better performance

    Modeling Data-Plane Power Consumption of Future Internet Architectures

    Full text link
    With current efforts to design Future Internet Architectures (FIAs), the evaluation and comparison of different proposals is an interesting research challenge. Previously, metrics such as bandwidth or latency have commonly been used to compare FIAs to IP networks. We suggest the use of power consumption as a metric to compare FIAs. While low power consumption is an important goal in its own right (as lower energy use translates to smaller environmental impact as well as lower operating costs), power consumption can also serve as a proxy for other metrics such as bandwidth and processor load. Lacking power consumption statistics about either commodity FIA routers or widely deployed FIA testbeds, we propose models for power consumption of FIA routers. Based on our models, we simulate scenarios for measuring power consumption of content delivery in different FIAs. Specifically, we address two questions: 1) which of the proposed FIA candidates achieves the lowest energy footprint; and 2) which set of design choices yields a power-efficient network architecture? Although the lack of real-world data makes numerous assumptions necessary for our analysis, we explore the uncertainty of our calculations through sensitivity analysis of input parameters

    Linux XIA: an interoperable meta network architecture to crowdsource the future Internet

    Full text link
    With the growing number of proposed clean-slate redesigns of the Internet, the need for a medium that enables all stakeholders to participate in the realization, evaluation, and selection of these designs is increasing. We believe that the missing catalyst is a meta network architecture that welcomes most, if not all, clean-state designs on a level playing field, lowers deployment barriers, and leaves the final evaluation to the broader community. This paper presents Linux XIA, a native implementation of XIA [12] in the Linux kernel, as a candidate. We first describe Linux XIA in terms of its architectural realizations and algorithmic contributions. We then demonstrate how to port several distinct and unrelated network architectures onto Linux XIA. Finally, we provide a hybrid evaluation of Linux XIA at three levels of abstraction in terms of its ability to: evolve and foster interoperation of new architectures, embed disparate architectures inside the implementation’s framework, and maintain a comparable forwarding performance to that of the legacy TCP/IP implementation. Given this evaluation, we substantiate a previously unsupported claim of XIA: that it readily supports and enables network evolution, collaboration, and interoperability—traits we view as central to the success of any future Internet architecture.This research was supported by the National Science Foundation under awards CNS-1040800, CNS-1345307 and CNS-1347525

    Peer to Peer Information Retrieval: An Overview

    Get PDF
    Peer-to-peer technology is widely used for file sharing. In the past decade a number of prototype peer-to-peer information retrieval systems have been developed. Unfortunately, none of these have seen widespread real- world adoption and thus, in contrast with file sharing, information retrieval is still dominated by centralised solutions. In this paper we provide an overview of the key challenges for peer-to-peer information retrieval and the work done so far. We want to stimulate and inspire further research to overcome these challenges. This will open the door to the development and large-scale deployment of real-world peer-to-peer information retrieval systems that rival existing centralised client-server solutions in terms of scalability, performance, user satisfaction and freedom

    VeriTable: Fast Equivalence Verification of Multiple Large Forwarding Tables

    Full text link
    Due to network practices such as traffic engineering and multi-homing, the number of routes---also known as IP prefixes---in the global forwarding tables has been increasing significantly in the last decade and continues growing in a super linear trend. One of the most promising solutions is to use smart Forwarding Information Base (FIB) aggregation algorithms to aggregate the prefixes and convert a large table into a small one. Doing so poses a research question, however, i.e., how can we quickly verify that the original table yields the same forwarding behaviors as the aggregated one? We answer this question in this paper, including addressing the challenges caused by the longest prefix matching (LPM) lookups. In particular, we propose the VeriTable algorithm that can employ a single tree/trie traversal to quickly check if multiple forwarding tables are forwarding equivalent, as well as if they could result in routing loops or black holes. The VeriTable algorithm significantly outperforms the state-of-the-art work for both IPv4 and IPv6 tables in every aspect, including the total running time, memory access times and memory consumption.Comment: INFOCOM 201

    X-Vine: Secure and Pseudonymous Routing Using Social Networks

    Full text link
    Distributed hash tables suffer from several security and privacy vulnerabilities, including the problem of Sybil attacks. Existing social network-based solutions to mitigate the Sybil attacks in DHT routing have a high state requirement and do not provide an adequate level of privacy. For instance, such techniques require a user to reveal their social network contacts. We design X-Vine, a protection mechanism for distributed hash tables that operates entirely by communicating over social network links. As with traditional peer-to-peer systems, X-Vine provides robustness, scalability, and a platform for innovation. The use of social network links for communication helps protect participant privacy and adds a new dimension of trust absent from previous designs. X-Vine is resilient to denial of service via Sybil attacks, and in fact is the first Sybil defense that requires only a logarithmic amount of state per node, making it suitable for large-scale and dynamic settings. X-Vine also helps protect the privacy of users social network contacts and keeps their IP addresses hidden from those outside of their social circle, providing a basis for pseudonymous communication. We first evaluate our design with analysis and simulations, using several real world large-scale social networking topologies. We show that the constraints of X-Vine allow the insertion of only a logarithmic number of Sybil identities per attack edge; we show this mitigates the impact of malicious attacks while not affecting the performance of honest nodes. Moreover, our algorithms are efficient, maintain low stretch, and avoid hot spots in the network. We validate our design with a PlanetLab implementation and a Facebook plugin.Comment: 15 page

    An Efficient Parallel IP Lookup Technique for IPv6 Routers Using Multiple Hashing with Ternary marker storage

    Full text link
    Internet address lookup is a challenging problem because of the increasing routing table sizes, increased traffic, higher speed links, and the migration to 128 bit IPv6 addresses. Routing lookup involves computation of best matching prefix for which existing solutions scale poorly when traffic in the router increases or when employed for IPV6 address lookup. Our paper describes a novel approach which employs multiple hashing on reduced number of hash tables on which ternary search on levels is applied in parallel. This scheme handles large number of prefixes generated by controlled prefix expansion by reducing collision and distributing load fairly in the hash buckets thus providing faster worst case and average case lookups. The approach we describe is fast, simple, scalable, parallelizable, and flexible
    corecore