11 research outputs found

    A Hybrid Approach to Formal Verification of Higher-Order Masked Arithmetic Programs

    Get PDF
    Side-channel attacks, which are capable of breaking secrecy via side-channel information, pose a growing threat to the implementation of cryptographic algorithms. Masking is an effective countermeasure against side-channel attacks by removing the statistical dependence between secrecy and power consumption via randomization. However, designing efficient and effective masked implementations turns out to be an error-prone task. Current techniques for verifying whether masked programs are secure are limited in their applicability and accuracy, especially when they are applied. To bridge this gap, in this article, we first propose a sound type system, equipped with an efficient type inference algorithm, for verifying masked arithmetic programs against higher-order attacks. We then give novel model-counting based and pattern-matching based methods which are able to precisely determine whether the potential leaky observable sets detected by the type system are genuine or simply spurious. We evaluate our approach on various implementations of arithmetic cryptographicprograms.The experiments confirm that our approach out performs the state-of-the-art base lines in terms of applicability, accuracy and efficiency

    A hybrid approach to formal verification of higher-order masked arithmetic programs

    Get PDF
    Side-channel attacks, which are capable of breaking secrecy via side-channel information, pose a growing threat to the implementation of cryptographic algorithms. Masking is an effective countermeasure against side-channel attacks by removing the statistical dependence between secrecy and power consumption via randomization. However, designing efficient and effective masked implementations turns out to be an error-prone task. Current techniques for verifying whether masked programs are secure are limited in their applicability and accuracy, especially when they are applied. To bridge this gap, in this article, we first propose a sound type system, equipped with an efficient type inference algorithm, for verifying masked arithmetic programs against higher-order attacks. We then give novel model-counting-based and pattern-matching-based methods that are able to precisely determine whether the potential leaky observable sets detected by the type system are genuine or simply spurious. We evaluate our approach on various implementations of arithmetic cryptographic programs. The experiments confirm that our approach outperforms the state-of-the-art baselines in terms of applicability, accuracy, and efficiency

    Operating System Support for Redundant Multithreading

    Get PDF
    Failing hardware is a fact and trends in microprocessor design indicate that the fraction of hardware suffering from permanent and transient faults will continue to increase in future chip generations. Researchers proposed various solutions to this issue with different downsides: Specialized hardware components make hardware more expensive in production and consume additional energy at runtime. Fault-tolerant algorithms and libraries enforce specific programming models on the developer. Compiler-based fault tolerance requires the source code for all applications to be available for recompilation. In this thesis I present ASTEROID, an operating system architecture that integrates applications with different reliability needs. ASTEROID is built on top of the L4/Fiasco.OC microkernel and extends the system with Romain, an operating system service that transparently replicates user applications. Romain supports single- and multi-threaded applications without requiring access to the application's source code. Romain replicates applications and their resources completely and thereby does not rely on hardware extensions, such as ECC-protected memory. In my thesis I describe how to efficiently implement replication as a form of redundant multithreading in software. I develop mechanisms to manage replica resources and to make multi-threaded programs behave deterministically for replication. I furthermore present an approach to handle applications that use shared-memory channels with other programs. My evaluation shows that Romain provides 100% error detection and more than 99.6% error correction for single-bit flips in memory and general-purpose registers. At the same time, Romain's execution time overhead is below 14% for single-threaded applications running in triple-modular redundant mode. The last part of my thesis acknowledges that software-implemented fault tolerance methods often rely on the correct functioning of a certain set of hardware and software components, the Reliable Computing Base (RCB). I introduce the concept of the RCB and discuss what constitutes the RCB of the ASTEROID system and other fault tolerance mechanisms. Thereafter I show three case studies that evaluate approaches to protecting RCB components and thereby aim to achieve a software stack that is fully protected against hardware errors

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    First International Conference on Ada (R) Programming Language Applications for the NASA Space Station, volume 2

    Get PDF
    Topics discussed include: reusability; mission critical issues; run time; expert systems; language issues; life cycle issues; software tools; and computers for Ada

    Eleventh European Powder Diffraction Conference. Warsaw, September 19-22, 2008

    Get PDF
    Zeitschrift für Kristallographie. Supplement Volume 30 presents the complete Proceedings of all contributions to the XI European Powder Diffraction Conference in Warsaw 2008: Method Development and Application,Instrumental, Software Development, Materials. Supplement Series of Zeitschrift für Kristallographie publishes Proceedings and Abstracts of international conferences on the interdisciplinary field of crystallography
    corecore