902 research outputs found

    Self-Time Circuit Size Optimization For An Input Data Distribution

    Get PDF
    The analysis is based on the Logical Effort (LE). The LE model used in this work was extracted from SPICE simulation for the TMSC 0.18um process. The performance and energy dissipation of circuits implemented with this approach is 13% and 16% respectively better than circuits designed with previously proposed approaches

    Research in the effective implementation of guidance computers with large scale arrays Interim report

    Get PDF
    Functional logic character implementation in breadboard design of NASA modular compute

    Techniques of Energy-Efficient VLSI Chip Design for High-Performance Computing

    Get PDF
    How to implement quality computing with the limited power budget is the key factor to move very large scale integration (VLSI) chip design forward. This work introduces various techniques of low power VLSI design used for state of art computing. From the viewpoint of power supply, conventional in-chip voltage regulators based on analog blocks bring the large overhead of both power and area to computational chips. Motivated by this, a digital based switchable pin method to dynamically regulate power at low circuit cost has been proposed to make computing to be executed with a stable voltage supply. For one of the widely used and time consuming arithmetic units, multiplier, its operation in logarithmic domain shows an advantageous performance compared to that in binary domain considering computation latency, power and area. However, the introduced conversion error reduces the reliability of the following computation (e.g. multiplication and division.). In this work, a fast calibration method suppressing the conversion error and its VLSI implementation are proposed. The proposed logarithmic converter can be supplied by dc power to achieve fast conversion and clocked power to reduce the power dissipated during conversion. Going out of traditional computation methods and widely used static logic, neuron-like cell is also studied in this work. Using multiple input floating gate (MIFG) metal-oxide semiconductor field-effect transistor (MOSFET) based logic, a 32-bit, 16-operation arithmetic logic unit (ALU) with zipped decoding and a feedback loop is designed. The proposed ALU can reduce the switching power and has a strong driven-in capability due to coupling capacitors compared to static logic based ALU. Besides, recent neural computations bring serious challenges to digital VLSI implementation due to overload matrix multiplications and non-linear functions. An analog VLSI design which is compatible to external digital environment is proposed for the network of long short-term memory (LSTM). The entire analog based network computes much faster and has higher energy efficiency than the digital one

    High-level power optimisation for Digital Signal Processing in Recon gurable Logic

    No full text
    This thesis is concerned with the optimisation of Digital Signal Processing (DSP) algorithm implementations on recon gurable hardware via the selection of appropriate word-lengths for the signals in these algorithms, in order to minimise system power consumption. Whilst existing word-length optimisation work has concentrated on the minimisation of the area of algorithm implementations, this work introduces the rst set of power consumption models that can be evaluated quickly enough to be used within the search of the enormous design space of multiple word-length optimisation problems. These models achieve their speed by estimating both the power consumed within the arithmetic components of an algorithm and the power in the routing wires that connect these components, using only a high-level description of the algorithm itself. Trading o a small reduction in power model accuracy for a large increase in speed is one of the major contributions of this thesis. In addition to the work on power consumption modelling, this thesis also develops a new technique for selecting the appropriate word-lengths for an algorithm implementation in order to minimise its cost in terms of power (or some other metric for which models are available). The method developed is able to provide tight lower and upper bounds on the optimal cost that can be obtained for a particular word-length optimisation problem and can, as a result, nd provably near-optimal solutions to word-length optimisation problems without resorting to an NP-hard search of the design space. Finally the costs of systems optimised via the proposed technique are compared to those obtainable by word-length optimisation for minimisation of other metrics (such as logic area) and the results compared, providing greater insight into the nature of wordlength optimisation problems and the extent of the improvements obtainable by them

    Skybridge: 3-D Integrated Circuit Technology Alternative to CMOS

    Full text link
    Continuous scaling of CMOS has been the major catalyst in miniaturization of integrated circuits (ICs) and crucial for global socio-economic progress. However, scaling to sub-20nm technologies is proving to be challenging as MOSFETs are reaching their fundamental limits and interconnection bottleneck is dominating IC operational power and performance. Migrating to 3-D, as a way to advance scaling, has eluded us due to inherent customization and manufacturing requirements in CMOS that are incompatible with 3-D organization. Partial attempts with die-die and layer-layer stacking have their own limitations. We propose a 3-D IC fabric technology, Skybridge[TM], which offers paradigm shift in technology scaling as well as design. We co-architect Skybridge's core aspects, from device to circuit style, connectivity, thermal management, and manufacturing pathway in a 3-D fabric-centric manner, building on a uniform 3-D template. Our extensive bottom-up simulations, accounting for detailed material system structures, manufacturing process, device, and circuit parasitics, carried through for several designs including a designed microprocessor, reveal a 30-60x density, 3.5x performance per watt benefits, and 10X reduction in interconnect lengths vs. scaled 16-nm CMOS. Fabric-level heat extraction features are shown to successfully manage IC thermal profiles in 3-D. Skybridge can provide continuous scaling of integrated circuits beyond CMOS in the 21st century.Comment: 53 Page
    • …
    corecore