340 research outputs found

    Minimal Connectivity

    Full text link
    A k-connected graph such that deleting any edge / deleting any vertex / contracting any edge results in a graph which is not k-connected is called minimally / critically / contraction-critically k-connected. These three classes play a prominent role in graph connectivity theory, and we give a brief introduction with a light emphasis on reduction- and construction theorems for classes of k-connected graphs.Comment: IMADA-preprint-math, 33 page

    Distributed Minimum Cut Approximation

    Full text link
    We study the problem of computing approximate minimum edge cuts by distributed algorithms. We use a standard synchronous message passing model where in each round, O(logn)O(\log n) bits can be transmitted over each edge (a.k.a. the CONGEST model). We present a distributed algorithm that, for any weighted graph and any ϵ(0,1)\epsilon \in (0, 1), with high probability finds a cut of size at most O(ϵ1λ)O(\epsilon^{-1}\lambda) in O(D)+O~(n1/2+ϵ)O(D) + \tilde{O}(n^{1/2 + \epsilon}) rounds, where λ\lambda is the size of the minimum cut. This algorithm is based on a simple approach for analyzing random edge sampling, which we call the random layering technique. In addition, we also present another distributed algorithm, which is based on a centralized algorithm due to Matula [SODA '93], that with high probability computes a cut of size at most (2+ϵ)λ(2+\epsilon)\lambda in O~((D+n)/ϵ5)\tilde{O}((D+\sqrt{n})/\epsilon^5) rounds for any ϵ>0\epsilon>0. The time complexities of both of these algorithms almost match the Ω~(D+n)\tilde{\Omega}(D + \sqrt{n}) lower bound of Das Sarma et al. [STOC '11], thus leading to an answer to an open question raised by Elkin [SIGACT-News '04] and Das Sarma et al. [STOC '11]. Furthermore, we also strengthen the lower bound of Das Sarma et al. by extending it to unweighted graphs. We show that the same lower bound also holds for unweighted multigraphs (or equivalently for weighted graphs in which O(wlogn)O(w\log n) bits can be transmitted in each round over an edge of weight ww), even if the diameter is D=O(logn)D=O(\log n). For unweighted simple graphs, we show that even for networks of diameter O~(1λnαλ)\tilde{O}(\frac{1}{\lambda}\cdot \sqrt{\frac{n}{\alpha\lambda}}), finding an α\alpha-approximate minimum cut in networks of edge connectivity λ\lambda or computing an α\alpha-approximation of the edge connectivity requires Ω~(D+nαλ)\tilde{\Omega}(D + \sqrt{\frac{n}{\alpha\lambda}}) rounds

    Zero-free regions for multivariate Tutte polynomials (alias Potts-model partition functions) of graphs and matroids

    Get PDF
    The chromatic polynomial P_G(q) of a loopless graph G is known to be nonzero (with explicitly known sign) on the intervals (-\infty,0), (0,1) and (1,32/27]. Analogous theorems hold for the flow polynomial of bridgeless graphs and for the characteristic polynomial of loopless matroids. Here we exhibit all these results as special cases of more general theorems on real zero-free regions of the multivariate Tutte polynomial Z_G(q,v). The proofs are quite simple, and employ deletion-contraction together with parallel and series reduction. In particular, they shed light on the origin of the curious number 32/27.Comment: LaTeX2e, 49 pages, includes 5 Postscript figure

    Defining Recursive Predicates in Graph Orders

    Full text link
    We study the first order theory of structures over graphs i.e. structures of the form (G,τ\mathcal{G},\tau) where G\mathcal{G} is the set of all (isomorphism types of) finite undirected graphs and τ\tau some vocabulary. We define the notion of a recursive predicate over graphs using Turing Machine recognizable string encodings of graphs. We also define the notion of an arithmetical relation over graphs using a total order t\leq_t on the set G\mathcal{G} such that (G,t\mathcal{G},\leq_t) is isomorphic to (N,\mathbb{N},\leq). We introduce the notion of a \textit{capable} structure over graphs, which is one satisfying the conditions : (1) definability of arithmetic, (2) definability of cardinality of a graph, and (3) definability of two particular graph predicates related to vertex labellings of graphs. We then show any capable structure can define every arithmetical predicate over graphs. As a corollary, any capable structure also defines every recursive graph relation. We identify capable structures which are expansions of graph orders, which are structures of the form (G,\mathcal{G},\leq) where \leq is a partial order. We show that the subgraph order i.e. (G,s\mathcal{G},\leq_s), induced subgraph order with one constant P3P_3 i.e. (G,i,P3\mathcal{G},\leq_i,P_3) and an expansion of the minor order for counting edges i.e. (G,m,sameSize(x,y)\mathcal{G},\leq_m,sameSize(x,y)) are capable structures. In the course of the proof, we show the definability of several natural graph theoretic predicates in the subgraph order which may be of independent interest. We discuss the implications of our results and connections to Descriptive Complexity

    The number of vertices of degree 5 in a contraction-critically 5-connected graph

    Get PDF
    AbstractAn edge of a 5-connected graph is said to be 5-contractible if the contraction of the edge results in a 5-connected graph. A 5-connected graph with no 5-contractible edge is said to be contraction-critically 5-connected. Let V(G) and V5(G) denote the vertex set of a graph G and the set of degree 5 vertices of G, respectively. We prove that each contraction-critically 5-connected graph G has at least |V(G)|/2 vertices of degree 5. We also show that there is a sequence of contraction-critically 5-connected graphs {Gi} such that limi→∞|V5(Gi)|/|V(Gi)|=1/2

    Characterizations of Certain Classes of Graphs and Matroids

    Get PDF
    ``If a theorem about graphs can be expressed in terms of edges and cycles only, it probably exemplifies a more general theorem about matroids. Most of my work draws inspiration from this assertion, made by Tutte in 1979. In 2004, Ehrenfeucht, Harju and Rozenberg proved that all graphs can be constructed from complete graphs via a sequence of the operations of complementation, switching edges and non-edges at a vertex, and local complementation. In Chapter 2, we consider the binary matroid analogue of each of these graph operations. We prove that the analogue of the result of Ehrenfeucht et. al. does not hold for binary matroids. However, we introduce a fourth operation that does enable the construction of all binary matroids from projective geometries. A graph in which every connected induced subgraph has a disconnected complement is called a cograph. Such graphs are precisely the graphs that do not have the 4-vertex path as an induced subgraph. In Chapter 3, we define a 2-cograph to be a graph in which the complement of every 2-connected induced subgraph is not 2-connected. The class of 2-cographs is closed under induced minors. We characterize the class of non-2-cographs for which every proper induced minor is a 2-cograph. We further find the finitely many members of this class whose complements are also induced-minor-minimal non-2-cographs. Chapter 4 introduces binary comatroids, a matroid analogue of cographs. We identify all binary non-comatroids for which every proper flat is a binary comatroid. In addition, we extend our results to ternary matroids
    corecore