1,284 research outputs found

    3D Simulation with virtual stereo rig for optimizing centrifugal fertilizer spreading

    Get PDF
    Stereovision can be used to characterize of the fertilizer centrifugal spreading process and to control the spreading fertilizer distribution pattern on the ground reference. Fertilizer grains, however, resemble each other and the grain images contain little information on texture. Therefore, the accuracy of stereo matching algorithms in literature cannot be used as a reference for stereo images of fertilizer grains. In order to evaluate stereo matching algorithms applied to images of grains a generator of synthetic stereo particle images is presented in this paper. The particle stereo image generator consists of two main parts: the particle 3D position generator and the virtual stereo rig. The particle 3D position generator uses a simple ballistic flight model and the disc characteristics to simulate the ejection and the displacement of grains. The virtual stereo rig simUlates the stereo acquisition system and generates stereo images, a disparity map and an occlusion map. The results are satisfying and present an accurate reference to evaluate stereo particles matching algorithms

    A high speed Tri-Vision system for automotive applications

    Get PDF
    Purpose: Cameras are excellent ways of non-invasively monitoring the interior and exterior of vehicles. In particular, high speed stereovision and multivision systems are important for transport applications such as driver eye tracking or collision avoidance. This paper addresses the synchronisation problem which arises when multivision camera systems are used to capture the high speed motion common in such applications. Methods: An experimental, high-speed tri-vision camera system intended for real-time driver eye-blink and saccade measurement was designed, developed, implemented and tested using prototype, ultra-high dynamic range, automotive-grade image sensors specifically developed by E2V (formerly Atmel) Grenoble SA as part of the European FP6 project – sensation (advanced sensor development for attention stress, vigilance and sleep/wakefulness monitoring). Results : The developed system can sustain frame rates of 59.8 Hz at the full stereovision resolution of 1280 × 480 but this can reach 750 Hz when a 10 k pixel Region of Interest (ROI) is used, with a maximum global shutter speed of 1/48000 s and a shutter efficiency of 99.7%. The data can be reliably transmitted uncompressed over standard copper Camera-Link¼ cables over 5 metres. The synchronisation error between the left and right stereo images is less than 100 ps and this has been verified both electrically and optically. Synchronisation is automatically established at boot-up and maintained during resolution changes. A third camera in the set can be configured independently. The dynamic range of the 10bit sensors exceeds 123 dB with a spectral sensitivity extending well into the infra-red range. Conclusion: The system was subjected to a comprehensive testing protocol, which confirms that the salient requirements for the driver monitoring application are adequately met and in some respects, exceeded. The synchronisation technique presented may also benefit several other automotive stereovision applications including near and far-field obstacle detection and collision avoidance, road condition monitoring and others.Partially funded by the EU FP6 through the IST-507231 SENSATION project.peer-reviewe

    Accurate Feature Extraction and Control Point Correction for Camera Calibration with a Mono-Plane Target

    Get PDF
    The paper addresses two problems related to 3D camera calibration using a single mono-plane calibration target with circular control marks. The first problem is how to compute accurately the locations of the features (ellipses) in images of the target. Since the structure of the control marks is known beforehand, we propose to use a shape-specific searching technique to find the optimal locations of the features. Our experiments have shown this technique generates more accurate feature locations than the state-of-the-art ellipse extraction methods. The second problem is how to refine the control mark locations with unknown manufacturing errors. We demonstrate in a case study, where the control marks are laser printed on a A4 paper, that the manufacturing errors of the control marks can be compensated to a good extent so that the remaining calibration errors are reduced significantly. 1

    Three-dimensional contact patch strain measurement inside rolling off-Road tyres

    Get PDF
    The forces generated in the tyre contact-patch are important for vehicle dynamics analysis. The tyre contact patch is not directly visible due to the terrain. Measuring the strain in the contact patch region may give insight into the forces generated by the tyre as it deforms. Strain measurement in the contact patch is often limited to discrete points, using strain gauges or other techniques which limits data capture to once per revolution. In this study stereovision cameras are used to capture unique features in the pattern painted on the tyres inner surface. An in-tyre mechanically stabilized camera system allows the contact patch to be captured continuously and the stereovision cameras allow for full field measurement of the tyre inner surface. In post processing the features are tracked and triangulated to form point-clouds for each time step. Point-clouds are compared to determine the strain of common points in two directions. The system is applied to an agricultural tyre with large tread-blocks. The wheel is instrumented to measure pressure and forces. The tyre is tested statically in a series of tyre tests where the lateral, longitudinal and vertical displacement is controlled. The strain measured in the tyre contact patch region is compared to the forces measured at the wheel centre. It is noticed that as the measured forces increases so too does the magnitudes of the strains. Unique patterns are found in the contact patch strain for each test type. These patterns could be used to identify the type of forces experienced by the wheel while the strain magnitude could give an indication of the magnitude of the forces. Future work could allow for strain measurement in the contact patch as the tyre rolls over deformable terrain where displacement is not easily controlled.Dissertation (MEng)--University of Pretoria, 2019.Mechanical and Aeronautical EngineeringMEngUnrestricte

    Baseline and triangulation geometry in a standard plenoptic camera

    Get PDF
    In this paper, we demonstrate light field triangulation to determine depth distances and baselines in a plenoptic camera. The advancement of micro lenses and image sensors enabled plenoptic cameras to capture a scene from different viewpoints with sufficient spatial resolution. While object distances can be inferred from disparities in a stereo viewpoint pair using triangulation, this concept remains ambiguous when applied in case of plenoptic cameras. We present a geometrical light field model allowing the triangulation to be applied to a plenoptic camera in order to predict object distances or to specify baselines as desired. It is shown that distance estimates from our novel method match those of real objects placed in front of the camera. Additional benchmark tests with an optical design software further validate the model’s accuracy with deviations of less than 0:33 % for several main lens types and focus settings. A variety of applications in the automotive and robotics field can benefit from this estimation model

    Integrated Stereovision for an Autonomous Ground Vehicle Competing in the Darpa Grand Challenge

    Get PDF
    The DARPA Grand Challenge (DGC) 2005 was a competition, in form of a desert race for autonomous ground vehicles, arranged by the U.S. Defense Advanced Research Project Agency (DARPA). The purpose was to encourage research and development of related technology. The objective of the race was to track a distance of 131.6 miles in less than 10 hours without any human interaction. Only public GPS signals and terrain sensors were allowed for navigation and obstacle detection. One of the teams competing in the DGC was Team Caltech from California Institute of Technology, consisting primarily of undergraduate students. The vehicle representing Team Caltech was a 2005 Ford E-350 van, named Alice. Alice had been modified for off-road driving and equipped with multiple sensors, computers and actuators. One type of terrain sensors used on Alice was stereovision. Two camera pairs were used for short and long range obstacle detection. This master thesis concerns development, testing and integration of stereovision sensors during the final four months leading to the race. To begin with, the stereovision system on Alice was not ready to use and had not undergone any testing. The work described in this thesis enabled operation of stereovision. It further improved its capability such that it increased the overall performance of Alice. Reliability was demonstrated through multiple desert field tests. Obstacle avoidance and navigation using only stereovision was successfully demonstrated. The completed work includes design and implementation of algorithms to improve camera focus and exposure control, increase processing speed and remove noise. Also hardware and software parameters were configured to achieve best possible operation. Alice managed to qualify to the race as one of the top ten vehicles. However she was only able to complete about 8 miles before running over a concrete barrier and out of the course, as a result of hardware failures and state estimation errors

    Panoramic Stereovision and Scene Reconstruction

    Get PDF
    With advancement of research in robotics and computer vision, an increasingly high number of applications require the understanding of a scene in three dimensions. A variety of systems are deployed to do the same. This thesis explores a novel 3D imaging technique. This involves the use of catadioptric cameras in a stereoscopic arrangement. A secondary system aims to stabilize the system in the event that the cameras are misaligned during operation. The system provides a stark advantage due to it being a cost effective alternative to present day standard state-of-the-art systems that achieve the same goal of 3D imaging. The compromise lies in the quality of depth estimation, which can be overcome with a different imager and calibration. The result was a panoramic disparity map generated by the system
    • 

    corecore