1,018,451 research outputs found

    Feature Selection with Evolving, Fast and Slow Using Two Parallel Genetic Algorithms

    Full text link
    Feature selection is one of the most challenging issues in machine learning, especially while working with high dimensional data. In this paper, we address the problem of feature selection and propose a new approach called Evolving Fast and Slow. This new approach is based on using two parallel genetic algorithms having high and low mutation rates, respectively. Evolving Fast and Slow requires a new parallel architecture combining an automatic system that evolves fast and an effortful system that evolves slow. With this architecture, exploration and exploitation can be done simultaneously and in unison. Evolving fast, with high mutation rate, can be useful to explore new unknown places in the search space with long jumps; and Evolving Slow, with low mutation rate, can be useful to exploit previously known places in the search space with short movements. Our experiments show that Evolving Fast and Slow achieves very good results in terms of both accuracy and feature elimination

    Thinking Fast and Slow with Deep Learning and Tree Search

    Get PDF
    Sequential decision making problems, such as structured prediction, robotic control, and game playing, require a combination of planning policies and generalisation of those plans. In this paper, we present Expert Iteration (ExIt), a novel reinforcement learning algorithm which decomposes the problem into separate planning and generalisation tasks. Planning new policies is performed by tree search, while a deep neural network generalises those plans. Subsequently, tree search is improved by using the neural network policy to guide search, increasing the strength of new plans. In contrast, standard deep Reinforcement Learning algorithms rely on a neural network not only to generalise plans, but to discover them too. We show that ExIt outperforms REINFORCE for training a neural network to play the board game Hex, and our final tree search agent, trained tabula rasa, defeats MoHex 1.0, the most recent Olympiad Champion player to be publicly released.Comment: v1 to v2: - Add a value function in MCTS - Some MCTS hyper-parameters changed - Repetition of experiments: improved accuracy and errors shown. (note the reduction in effect size for the tpt/cat experiment) - Results from a longer training run, including changes in expert strength in training - Comparison to MoHex. v3: clarify independence of ExIt and AG0. v4: see appendix

    In search of an observational quantum signature of the primordial perturbations in slow-roll and ultra slow-roll inflation

    Get PDF
    In the standard inflationary paradigm, cosmological density perturbations are generated as quantum fluctuations in the early Universe, but then undergo a quantum-to-classical transition. A key role in this transition is played by squeezing of the quantum state, which is a result of the strong suppression of the decaying mode component of the perturbations. Motivated by ever improving measurements of the cosmological perturbations, we ask whether there are scenarios where this decaying mode is nevertheless still observable in the late Universe, ideally leading to a ``smoking gun'' signature of the quantum nature of the perturbations. We address this question by evolving the quantum state of the perturbations from inflation into the post-inflationary Universe. After recovering the standard result that in slow-roll (SR) inflation the decaying mode is indeed hopelessly suppressed by the time the perturbations are observed (by 115\sim 115 orders of magnitude), we turn to ultra slow-roll (USR) inflation, a scenario in which the usual decaying mode actually grows on super-horizon scales. Despite this drastic difference in the behavior of the mode functions, we find also in USR that the late-Universe decaying mode amplitude is dramatically suppressed, in fact by the same 115\sim 115 orders of magnitude. We finally explain that this large suppression is a general result that holds beyond the SR and USR scenarios considered and follows from a modified version of Heisenberg's uncertainty principle and the observed amplitude of the primordial power spectrum. The classical behavior of the perturbations is thus closely related to the classical behavior of macroscopic objects drawing an analogy with the position of a massive particle, the curvature perturbations today have an enormous effective mass of order mpl2/H0210120m_{\rm pl}^2/H_0^2 \sim 10^{120}, making them highly classical.Comment: 27 pages, 7 figures. Comments welcom

    A two-dimensional search for a Gauss-Newton algorithm

    Get PDF
    Original article can be found at: http://www.ici.ro/camo/journal/jamo.htmThis paper describes a fall-back procedure for use with the Gauss-Newton method for nonlinear least-squares problems. While the basic Gauss-Newton algorithm is often successful, it is well-known that it can sometimes generate poor search directions and exhibit slow convergence. For dealing with such situations we suggest a new two-dimensional search strategy. Numerical experiments indicate that the proposed technique can be effective.Peer reviewe

    Search for Exotic Physics with the ANTARES Detector

    Full text link
    Besides the detection of high energy neutrinos, the ANTARES telescope offers an opportunity to improve sensitivity to exotic cosmological relics. In this article we discuss the sensitivity of the ANTARES detector to elativistic monopoles and slow nuclearites. Dedicated trigger algorithms and search strategies are being developed to search or them. The data filtering, background rejection selection criteria are described, as well as the expected sensitivity of ANTARES to exotic physics.Comment: Proceedings of the 31st ICRC conference, Lodz 2009, 4 pages, 6 figure
    corecore