199 research outputs found

    Slow Convergence of Ising and Spin Glass Models with Well-Separated Frustrated Vertices

    Get PDF
    Many physical models undergo phase transitions as some parameter of the system is varied. This phenomenon has bearing on the convergence times for local Markov chains walking among the configurations of the physical system. One of the most basic examples of this phenomenon is the ferromagnetic Ising model on an n x n square lattice region Lambda with mixed boundary conditions. For this spin system, if we fix the spins on the top and bottom sides of the square to be + and the left and right sides to be -, a standard Peierls argument based on energy shows that below some critical temperature t_c, any local Markov chain M requires time exponential in n to mix. Spin glasses are magnetic alloys that generalize the Ising model by specifying the strength of nearest neighbor interactions on the lattice, including whether they are ferromagnetic or antiferromagnetic. Whenever a face of the lattice is bounded by an odd number of edges with ferromagnetic interactions, the face is considered frustrated because the local competing objectives cannot be simultaneously satisfied. We consider spin glasses with exactly four well-separated frustrated faces that are symmetric around the center of the lattice region under 90 degree rotations. We show that local Markov chains require exponential time for all spin glasses in this class. This class includes the ferromagnetic Ising model with mixed boundary conditions described above, where the frustrated faces are on the boundary. The standard Peierls argument breaks down when the frustrated faces are on the interior of Lambda and yields weaker results when they are on the boundary of Lambda but not near the corners. We show that there is a universal temperature T below which M will be slow for all spin glasses with four well-separated frustrated faces. Our argument shows that there is an exponentially small cut indicated by the free energy, carefully exploiting both entropy and energy to establish a small bottleneck in the state space to establish slow mixing

    Magnetic Monopole Dynamics in Spin Ice

    Full text link
    One of the most remarkable examples of emergent quasi-particles, is that of the "fractionalization" of magnetic dipoles in the low energy configurations of materials known as "spin ice", into free and unconfined magnetic monopoles interacting via Coulomb's 1/r law [Castelnovo et. al., Nature, 451, 42-45 (2008)]. Recent experiments have shown that a Coulomb gas of magnetic charges really does exist at low temperature in these materials and this discovery provides a new perspective on otherwise largely inaccessible phenomenology. In this paper, after a review of the different spin ice models, we present detailed results describing the diffusive dynamics of monopole particles starting both from the dipolar spin ice model and directly from a Coulomb gas within the grand canonical ensemble. The diffusive quasi-particle dynamics of real spin ice materials within "quantum tunneling" regime is modeled with Metropolis dynamics, with the particles constrained to move along an underlying network of oriented paths, which are classical analogues of the Dirac strings connecting pairs of Dirac monopoles.Comment: 26 pages, 12 figure

    Unconventional computing platforms and nature-inspired methods for solving hard optimisation problems

    Get PDF
    The search for novel hardware beyond the traditional von Neumann architecture has given rise to a modern area of unconventional computing requiring the efforts of mathematicians, physicists and engineers. Many analogue physical systems, including networks of nonlinear oscillators, lasers, condensates, and superconducting qubits, are proposed and realised to address challenging computational problems from various areas of social and physical sciences and technology. Understanding the underlying physical process by which the system finds the solutions to such problems often leads to new optimisation algorithms. This thesis focuses on studying gain-dissipative systems and nature-inspired algorithms that form a hybrid architecture that may soon rival classical hardware. Chapter 1 lays the necessary foundation and explains various interdisciplinary terms that are used throughout the dissertation. In particular, connections between the optimisation problems and spin Hamiltonians are established, their computational complexity classes are explained, and the most prominent physical platforms for spin Hamiltonian implementation are reviewed. Chapter 2 demonstrates a large variety of behaviours encapsulated in networks of polariton condensates, which are a vivid example of a gain-dissipative system we use throughout the thesis. We explain how the variations of experimentally tunable parameters allow the networks of polariton condensates to represent different oscillator models. We derive analytic expressions for the interactions between two spatially separated polariton condensates and show various synchronisation regimes for periodic chains of condensates. An odd number of condensates at the vertices of a regular polygon leads to a spontaneous formation of a giant multiply-quantised vortex at the centre of a polygon. Numerical simulations of all studied configurations of polariton condensates are performed with a mean-field approach with some theoretically proposed physical phenomena supported by the relevant experiments. Chapter 3 examines the potential of polariton graphs to find the low-energy minima of the spin Hamiltonians. By associating a spin with a condensate phase, the minima of the XY model are achieved for simple configurations of spatially-interacting polariton condensates. We argue that such implementation of gain-dissipative simulators limits their applicability to the classes of easily solvable problems since the parameters of a particular Hamiltonian depend on the node occupancies that are not known a priori. To overcome this difficulty, we propose to adjust pumping intensities and coupling strengths dynamically. We further theoretically suggest how the discrete Ising and nn-state planar Potts models with or without external fields can be simulated using gain-dissipative platforms. The underlying operational principle originates from a combination of resonant and non-resonant pumping. Spatial anisotropy of pump and dissipation profiles enables an effective control of the sign and intensity of the coupling strength between any two neighbouring sites, which we demonstrate with a two dimensional square lattice of polariton condensates. For an accurate minimisation of discrete and continuous spin Hamiltonians, we propose a fully controllable polaritonic XY-Ising machine based on a network of geometrically isolated polariton condensates. In Chapter 4, we look at classical computing rivals and study nature-inspired methods for optimising spin Hamiltonians. Based on the operational principles of gain-dissipative machines, we develop a novel class of gain-dissipative algorithms for the optimisation of discrete and continuous problems and show its performance in comparison with traditional optimisation techniques. Besides looking at traditional heuristic methods for Ising minimisation, such as the Hopfield-Tank neural networks and parallel tempering, we consider a recent physics-inspired algorithm, namely chaotic amplitude control, and exact commercial solver, Gurobi. For a proper evaluation of physical simulators, we further discuss the importance of detecting easy instances of hard combinatorial optimisation problems. The Ising model for certain interaction matrices, that are commonly used for evaluating the performance of unconventional computing machines and assumed to be exponentially hard, is shown to be solvable in polynomial time including the Mobius ladder graphs and Mattis spin glasses. In Chapter 5 we discuss possible future applications of unconventional computing platforms including emulation of search algorithms such as PageRank, realisation of a proof-of-work protocol for blockchain technology, and reservoir computing

    The Transverse-Field Ising Spin Glass Model on the Bethe Lattice with an Application to Adiabatic Quantum Computing

    Get PDF
    In this Ph.D. thesis we examine the Adiabatic Quantum Algorithm from the point of view of statistical and condensed matter physics. We do this by studying the transverse-field Ising spin glass model defined on the Bethe lattice, which is of independent interest to both the physics community and the quantum computation community. Using quantum Monte Carlo methods, we perform an extensive study of the the ground-state properties of the model, including the R\'enyi entanglement entropy, quantum Fisher information, Edwards--Anderson parameter, correlation functions. Through the finite-size scaling of these quantities we find multiple independent and coinciding estimates for the critical point of the glassy phase transition at zero temperature, which completes the phase diagram of the model as was previously known in the literature. We find volumetric bipartite and finite multipartite entanglement for all values of the transverse field considered, both in the paramagnetic and in the glassy phase, and at criticality. We discuss their implication with respect to quantum computing. By writing a perturbative expansion in the large transverse field regime we develop a mean-field quasiparticle theory that explains the numerical data. The emerging picture is that of degenerate bands of localized quasiparticle excitations on top of a vacuum. The perturbative energy corrections to these bands are given by pair creation/annihilation and hopping processes of the quasiparticles on the Bethe lattice. The transition to the glassy phase is explained as a crossing of the energy level of the vacuum with one of the bands, so that creation of quasiparticles becomes energetically favoured. We also study the localization properties of the model by employing the forward scattering approximation of the locator expansion, which we compute using a numerical transfer matrix technique. We obtain a lower bound for the mobility edge of the system. We find a localized region inside of the glassy phase and we discuss the consequences of its presence for the Adiabatic Quantum Algorithm
    • …
    corecore