19 research outputs found

    Slotted ALOHA Overlay on LoRaWAN: a Distributed Synchronization Approach

    Full text link
    LoRaWAN is one of the most promising standards for IoT applications. Nevertheless, the high density of end-devices expected for each gateway, the absence of an effective synchronization scheme between gateway and end-devices, challenge the scalability of these networks. In this article, we propose to regulate the communication of LoRaWAN networks using a Slotted-ALOHA (S-ALOHA) instead of the classic ALOHA approach used by LoRa. The implementation is an overlay on top of the standard LoRaWAN; thus no modification in pre-existing LoRaWAN firmware and libraries is necessary. Our method is based on a novel distributed synchronization service that is suitable for low-cost IoT end-nodes. S-ALOHA supported by our synchronization service significantly improves the performance of traditional LoRaWAN networks regarding packet loss rate and network throughput.Comment: 4 pages, 8 figure

    Collision-Free Transmissions in an IoT Monitoring Application Based on LoRaWAN

    Get PDF
    International audienceWith the Internet of Things (IoT), the number of monitoring applications deployed is considerably increasing, whatever the field considered: smart city, smart agriculture, environment monitoring, air pollution monitoring, to name a few. The LoRaWAN (Long Range Wide Area Network)architecture with its long range communication, its robustness to interference and its reduced energy consumption is an excellent candidate to support such applications. However, if the number of end devices is high, the reliability of LoRaWAN, measured by the Packet Delivery Ratio (PDR), becomes unacceptable due to an excessive number of collisions. In this paper, we propose two different families of solutions ensuring collision-free transmissions. The first family is TDMA (Time-Division Multiple Access)-based. All clusters transmit in sequence and up to six end devices with different spreading factors belonging to the same cluster are allowed to transmit in parallel. The second family is FDMA (Frequency Divsion Multiple Access)-based. All clusters transmit in parallel, each cluster on its own frequency. Within each cluster, all end devices transmit in sequence. Their performance are compared in terms of PDR, energy consumption by end device and maximum number of end devices supported. Simulation results corroborate the theoretical results and show the high efficiency of the solutions proposed

    Ultra-low power IoT applications: from transducers to wireless protocols

    Get PDF
    This dissertation aims to explore Internet of Things (IoT) sensor nodes in various application scenarios with different design requirements. The research provides a comprehensive exploration of all the IoT layers composing an advanced device, from transducers to on-board processing, through low power hardware schemes and wireless protocols for wide area networks. Nowadays, spreading and massive utilization of wireless sensor nodes pushes research and industries to overcome the main limitations of such constrained devices, aiming to make them easily deployable at a lower cost. Significant challenges involve the battery lifetime that directly affects the device operativity and the wireless communication bandwidth. Factors that commonly contrast the system scalability and the energy per bit, as well as the maximum coverage. This thesis aims to serve as a reference and guideline document for future IoT projects, where results are structured following a conventional development pipeline. They usually consider communication standards and sensing as project requirements and low power operation as a necessity. A detailed overview of five leading IoT wireless protocols, together with custom solutions to overcome the throughput limitations and decrease the power consumption, are some of the topic discussed. Low power hardware engineering in multiple applications is also introduced, especially focusing on improving the trade-off between energy, functionality, and on-board processing capabilities. To enhance these features and to provide a bottom-top overview of an IoT sensor node, an innovative and low-cost transducer for structural health monitoring is presented. Lastly, the high-performance computing at the extreme edge of the IoT framework is addressed, with special attention to image processing algorithms running on state of the art RISC-V architecture. As a specific deployment scenario, an OpenCV-based stack, together with a convolutional neural network, is assessed on the octa-core PULP SoC

    An Orthogonal Air Pollution Monitoring Method (OAPM) Based on LoRaWAN

    Get PDF
    International audienceHigh accuracy air pollution monitoring in a smart city requires the deployment of a huge number of sensors in this city. One of the most appropriate wireless technologies expected to support high density deployment is LoRaWAN which belongs to the Low Power Wide Area Network (LPWAN) family and offers long communication range, multi-year battery lifetime and low cost end devices. It has been designed for End Devices (EDs) and applications that need to send small amounts of data a few times per hour. However, a high number of end devices breaks the orthogonality of LoRaWAN transmissions, which was one of the main advantages of LoRaWAN. Hence, network performances are strongly impacted. To solve this problem, we propose a solution called OAPM (Orthogonal Air Pollution Monitoring) which ensures the orthogonality of LoRaWAN transmissions and provides accurate air pollution monitoring. In this paper, we show how to organize EDs into clusters and sub-clusters, assign transmission times to EDs, configurate and synchronize them, taking into account the specificities of LoRaWAN and the features of the air pollution monitoring application. Simulation results corroborate the very good behavior of OAPM

    LoRaWAN simulation and analysis for performance enhancement of realistic networks

    Get PDF
    The Internet of Things (IoT) is becoming an ubiquitous technology, with new devices, solutions and applications being developed at an ever-increasing rate. Fundamental to the IoT revolution is the adoption of wireless protocols purposely designed to enable low-cost, long-range communication for numerous connected devices. Low Power Wide Area Networks (LPWANs) are wide area wireless telecommunication networks designed specifically for IoT applications. They allow for long-range communication at a low bit-rate among connected items, such as battery-powered sensors. However, with these benefits come also a number of drawbacks, including the limited data rate available and the reliance on low power channel access methods which can negatively impact performance in a highly dense network. The purpose of the research contained in this work is to measure the performance in terms of Quality-of-Service (QoS), Packet Delivery Ratio (PDR) and scalability of one LPWAN in particular, Long Range Wide Area Network (LoRaWAN), as well as providing possible improvements that current and future network owners can put into practice. LoRaWAN simple channel access protocol, based on pure Additive Links On-line Hawaii Area (ALOHA) is intended to reduce cost, complexity, and energy consumption while increasing transmission range. However, it also severely limits the scalability of the technology, making it more prone to packet collision, despite LoRaWAN being particularly resilient to self-interference, thanks to the underlining, proprietary Long Range (LoRa) modulation. In this thesis, LoRaWAN technology is evaluated through both software simulation and experimental deployments, with the goal of gaining a deeper understanding of the technology to then create better models and better performing deployments. The innovations and novel results presented throughout will accelerate the pervasiveness of LPWAN networks such as LoRaWAN, and ultimately their effectivness. Despite being developed in 2015, LoRa and LoRaWAN have both not been fully characterised, particularly in regard to large-scale behaviour. This is partly due to the low feasibility of deploying vast networks. To address this, the first recorded instance of anurban digital twin of 20 devices LoRaWAN network was deployed and analysed. The available simulation models, despite being successfully used in various research studies, are also not fully complete, and a deeper understanding of the technology is required to fix some remaining open issues. To give additional insight into their operation as well as practical improvements that can be carried out to maximise performance, both from a consumer and an industrial standpoint, existing LoRa and LoRaWAN modules for the network simulator NS-3 are enhanced and used throughout the work presented. Scalability and Quality-of-Service improvements are also presented, based on the knowledge gaps found in current LoRaWAN research and the results of the simulations performed. In particular, improvements on PDR up to 10% are reported using novel techniques of downlink independent optimisation, and new insight on the positioning of gateways to achieve maximum scalability in a two-gateways network are also highlighted

    Performance Analysis of LEO Satellite-Based IoT Networks in the Presence of Interference

    Full text link
    This paper explores a star-of-star topology for an internet-of-things (IoT) network using mega low Earth orbit constellations where the IoT users broadcast their sensed information to multiple satellites simultaneously over a shared channel. The satellites use amplify-and-forward relaying to forward the received signal to the ground station (GS), which then combines them coherently using maximal ratio combining. A comprehensive outage probability (OP) analysis is performed for the presented topology. Stochastic geometry is used to model the random locations of satellites, thus making the analysis general and independent of any constellation. The satellites are assumed to be visible if their elevation angle is greater than a threshold, called a mask angle. Statistical characteristics of the range and the number of visible satellites are derived for a given mask angle. Successive interference cancellation (SIC) and capture model (CM)-based decoding schemes are analyzed at the GS to mitigate interference effects. The average OP for the CM-based scheme, and the OP of the best user for the SIC scheme are derived analytically. Simulation results are presented that corroborate the derived analytical expressions. Moreover, insights on the effect of various system parameters like mask angle, altitude, number of satellites and decoding order are also presented. The results demonstrate that the explored topology can achieve the desired OP by leveraging the benefits of multiple satellites. Thus, this topology is an attractive choice for satellite-based IoT networks as it can facilitate burst transmissions without coordination among the IoT users.Comment: Submitted to IEEE IoT Journa

    Distributed scheduling algorithms for LoRa-based wide area cyber-physical systems

    Get PDF
    Low Power Wide Area Networks (LPWAN) are a class of wireless communication protocols that work over long distances, consume low power and support low datarates. LPWANs have been designed for monitoring applications, with sparse communication from nodes to servers and sparser from servers to nodes. Inspite of their initial design, LPWANs have the potential to target applications with higher and stricter requirements like those of Cyber-Physical Systems (CPS). Due to their long-range capabilities, LPWANs can specifically target CPS applications distributed over a wide-area, which is referred to as Wide-Area CPS (WA-CPS). Augmenting WA-CPSs with wireless communication would allow for more flexible, low-cost and easily maintainable deployment. However, wireless communications come with problems like reduced reliability and unpredictable latencies, making them harder to use for CPSs. With this intention, this thesis explores the use of LPWANs, specifically LoRa, to meet the communication and control requirements of WA-CPSs. The thesis focuses on using LoRa due to its high resilience to noise, several communication parameters to choose from and a freely modifiable communication stack and servers making it ideal for research and deployment. However, LoRaWAN suffers from low reliability due to its ALOHA channel access method. The thesis posits that "Distributed algorithms would increase the protocol's reliability allowing it to meet the requirements of WA-CPSs". Three different application scenarios are explored in this thesis that leverage unexplored aspects of LoRa to meet their requirements. The application scenarios are delay-tolerant vehicular networks, multi-stakeholder WA-CPS deployments and water distribution networks. The systems use novel algorithms to facilitate communication between the nodes and gateways to ensure a highly reliable system. The results outperform state-of-art techniques to prove that LoRa is currently under-utilised and can be used for CPS applications.Open Acces

    Real-Time Sensor Networks and Systems for the Industrial IoT

    Get PDF
    The Industrial Internet of Things (Industrial IoT—IIoT) has emerged as the core construct behind the various cyber-physical systems constituting a principal dimension of the fourth Industrial Revolution. While initially born as the concept behind specific industrial applications of generic IoT technologies, for the optimization of operational efficiency in automation and control, it quickly enabled the achievement of the total convergence of Operational (OT) and Information Technologies (IT). The IIoT has now surpassed the traditional borders of automation and control functions in the process and manufacturing industry, shifting towards a wider domain of functions and industries, embraced under the dominant global initiatives and architectural frameworks of Industry 4.0 (or Industrie 4.0) in Germany, Industrial Internet in the US, Society 5.0 in Japan, and Made-in-China 2025 in China. As real-time embedded systems are quickly achieving ubiquity in everyday life and in industrial environments, and many processes already depend on real-time cyber-physical systems and embedded sensors, the integration of IoT with cognitive computing and real-time data exchange is essential for real-time analytics and realization of digital twins in smart environments and services under the various frameworks’ provisions. In this context, real-time sensor networks and systems for the Industrial IoT encompass multiple technologies and raise significant design, optimization, integration and exploitation challenges. The ten articles in this Special Issue describe advances in real-time sensor networks and systems that are significant enablers of the Industrial IoT paradigm. In the relevant landscape, the domain of wireless networking technologies is centrally positioned, as expected
    corecore