44 research outputs found

    Discrete Geometry

    Get PDF
    The workshop on Discrete Geometry was attended by 53 participants, many of them young researchers. In 13 survey talks an overview of recent developments in Discrete Geometry was given. These talks were supplemented by 16 shorter talks in the afternoon, an open problem session and two special sessions. Mathematics Subject Classification (2000): 52Cxx. Abstract regular polytopes: recent developments. (Peter McMullen) Counting crossing-free configurations in the plane. (Micha Sharir) Geometry in additive combinatorics. (József Solymosi) Rigid components: geometric problems, combinatorial solutions. (Ileana Streinu) ‱ Forbidden patterns. (János Pach) ‱ Projected polytopes, Gale diagrams, and polyhedral surfaces. (Günter M. Ziegler) ‱ What is known about unit cubes? (Chuanming Zong) There were 16 shorter talks in the afternoon, an open problem session chaired by Jesús De Loera, and two special sessions: on geometric transversal theory (organized by Eli Goodman) and on a new release of the geometric software Cinderella (Jürgen Richter-Gebert). On the one hand, the contributions witnessed the progress the field provided in recent years, on the other hand, they also showed how many basic (and seemingly simple) questions are still far from being resolved. The program left enough time to use the stimulating atmosphere of the Oberwolfach facilities for fruitful interaction between the participants

    Recent progress on the elliptic curve discrete logarithm problem

    Get PDF
    International audienceWe survey recent work on the elliptic curve discrete logarithm problem. In particular we review index calculus algorithms using summation polynomials, and claims about their complexity

    Constant-Round Privacy Preserving Multiset Union

    Get PDF
    Privacy preserving multiset union (PPMU) protocol allows a set of parties, each with a multiset, to collaboratively compute a multiset union secretly, meaning that any information other than union is not revealed. We propose efficient PPMU protocols, using multiplicative homomorphic cryptosystem. The novelty of our protocol is to directly encrypt a polynomial by representing it by an element of an extension field. The resulting protocols consist of constant rounds and improve communication cost. We also prove the security of our protocol against malicious adversaries, in the random oracle model

    Computing Elliptic Curve Discrete Logarithms with Improved Baby-step Giant-step Algorithm

    Get PDF
    The negation map can be used to speed up the computation of elliptic curve discrete logarithms using either the baby-step giant-step algorithm (BSGS) or Pollard rho. Montgomery\u27s simultaneous modular inversion can also be used to speed up Pollard rho when running many walks in parallel. We generalize these ideas and exploit the fact that for any two elliptic curve points XX and YY, we can efficiently get X−YX-Y when we compute X+YX+Y. We apply these ideas to speed up the baby-step giant-step algorithm. Compared to the previous methods, the new methods can achieve a significant speedup for computing elliptic curve discrete logarithms in small groups or small intervals. Another contribution of our paper is to give an analysis of the average-case running time of Bernstein and Lange\u27s ``grumpy giants and a baby\u27\u27 algorithm, and also to consider this algorithm in the case of groups with efficient inversion. Our conclusion is that, in the fully-optimised context, both the interleaved BSGS and grumpy-giants algorithms have superior average-case running time compared with Pollard rho. Furthermore, for the discrete logarithm problem in an interval, the interleaved BSGS algorithm is considerably faster than the Pollard kangaroo or Gaudry-Schost methods

    A glimpse into Thurston's work

    Full text link
    We present an overview of some significant results of Thurston and their impact on mathematics. The final version of this paper will appear as Chapter 1 of the book "In the tradition of Thurston: Geometry and topology", edited by K. Ohshika and A. Papadopoulos (Springer, 2020)

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum

    MATCOS-10

    Get PDF

    Part I:

    Get PDF
    corecore